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What is on top of the cake?

What is the purpose of the cake?

There is a candle on top of the cake.

The cake is meant to be a birthday 
cake, as indicated by the candle.

What is the significance of 
the number 4 on the cake?

The number 4 on the cake likely 
represents the age of the person 
celebrating their birthday.

3D Question Answering

选择的是
multimodal model
这个方向提交的
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Yes, it is a human face, 
specifically the face of Buddha.

Is it one human face?

No, it is not one human face, 
it is a collection of human faces.

Yes, the image depicts a 
single bear body.

No, it is a collection of 
different bear bodies, each 
with its own unique features.

Text-to-3D

Point-Text 
Feature

Controlable Text-to-3D

Is it one human face? Is it one bear body? Is it one bear body?

A portable, wall-mountable 
radio with a cord, handle, 
and wooden box design.

The 3D object model in the image is a 
horse-drawn carriage, which is a type of 
vehicle commonly used in the past for 
transportation and transportation of 
goods the carriage is made of wood and 
has a classic design, with a roof and 
wooden wheels.

3D  Captioning

Elaborate on the details 
of this point cloud, please.

Describe the object.

Point-Text Retrieval:

Zero-shot Classification:
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3D  Recognition

Match

Text

 A man wearing a red 
shirt and blue pants.

Point-E

Original Low-Quality Points

 A man wearing a red 
shirt and blue pants.

Figure 1. Task examples of GPT4Point. It performs accurate 3D recognition, detailed captioning, precise Q&A, and high-quality
controllable 3D generation. Additionally, GPT4Point excels in 3D anomalous object description, accurately assessing abnormal shapes
like the multi-face object and the 3D generation failure case. It is a crucial ability in the assessment of generated 3D objects.

Abstract
Multimodal Large Language Models (MLLMs) have ex-

celled in 2D image-text comprehension and image gener-
ation, but their understanding of the 3D world is notably
deficient, limiting progress in 3D language understand-
ing and generation. To solve this problem, we introduce
GPT4Point, an innovative groundbreaking point-language
multimodal model designed specifically for unified 3D ob-
ject understanding and generation within the MLLM frame-
work. GPT4Point as a powerful 3D MLLM seamlessly
can execute a variety of point-text reference tasks such as
point-cloud captioning and Q&A. Additionally, GPT4Point

is equipped with advanced capabilities for controllable 3D
generation, it can get high-quality results through a low-
quality point-text feature maintaining the geometric shapes
and colors. To support the expansive needs of 3D object-text
pairs, we develop Pyramid-XL, a point-language dataset
annotation engine. It constructs a large-scale database
over 1M objects of varied text granularity levels from the
Objaverse-XL dataset, essential for training GPT4Point. A
comprehensive benchmark has been proposed to evaluate
3D point-language understanding capabilities. In extensive
evaluations, GPT4Point has demonstrated superior perfor-
mance in understanding and generation.
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1. Introduction
The recent Large Language Models (LLMs) [9, 41–

43, 49, 57, 59, 64] have demonstrated remarkable ad-
vancements in the field of natural language processing.
Inspired by their powerful capabilities, researchers have
also explored Multimodal LLMs (MLLMs), via adapting
LLMs into various modalities like images [31, 36], au-
dio [5, 17, 24] and videos [7, 70]. The proliferation of
extensive image-text pair [6, 51] has crucially enabled 2D
MLLMs i.e., Vision Language Models (VLMs) to interpret
images through textual representations. Concurrently, there
is a growing trend in utilizing these multimodal models for
guiding text-to-image generation [16, 52, 55, 71]. This rep-
resents a form of compression and reconstruction, explor-
ing how to accurately recover and even edit the input im-
age using controllable image generation models. However,
despite the impressive capabilities of MLLMs in handling
multiple modalities, they still face significant limitations in
understanding and accurately interpreting the 3D world, a
critical need for various important downstream applications
like intelligent robotics and augmented reality.

Recent efforts to develop 3D MLLMs [23, 82] have no-
table limitations. Some [23, 82] prioritize the overall scene
and focus primarily on the spatial coordinates of objects,
often neglecting the geometric details of individual objects.
This can lead to a limited understanding of the 3D world.
Meanwhile, these methods generally convert 2D image fea-
tures into 3D representations [23], which leads to a sub-
stantial loss of geometric accuracy. 3D geometry informa-
tion is important in understanding. As shown at the bot-
tom of Fig. 1, the VLM fails to recognize the four-sided
face object while our GPT4Point can figure out the anoma-
lies. Concurrent works focusing on utilizing 3D features
directly exhibit notable limitations. PointBind [21] exhibits
a deficiency in training and demonstrates restricted text ref-
erencing abilities due to the limited dataset. On the other
hand, PointLLM [66] necessitates the training of the corre-
sponding Language Model (LLM) component and does not
possess the capability to expand into text generation.

We present GPT4Point1, a novel unified framework for
point-language understanding and generation. GPT4Point
introduces the 3D object MLLM, which is a groundbreak-
ing language model that fully utilizes point clouds to per-
form various point-text tasks as shown in Fig. 1. We utilize
a Bert-based Point-QFormer for point-text feature align-
ment. Aligned features are separately input into the LLMs
for text inference tasks and Diffusion for 3D object gen-
eration tasks. It is worth noting that, given a low-quality
point cloud feature as a condition, GPT4Point can gener-
ate higher-quality results while maintaining the geometric
shapes and colors by using point-text aligned features called

1First author is the intern at Shanghai AI Laboratory.

controllable text-to-3D.

To tackle the scarcity of object point-language data [58],
we leverage the Objaverse-XL dataset [11, 12] to develop
an automated, effective data annotation engine Pyramid-
XL. It employs Vision Language Models (VLMs) for gen-
erating text annotations. Pyramid-XL solves the problem
that VLMs can not understand multi-view images directly.
By synthesizing captions from multi-views obtained by the
VLMs, the text annotation is stratified into three hierarchi-
cal levels, ranging from low to high, ultimately leading to
precise annotations. Apart from the data engine, we estab-
lish an object point-text benchmark for assessing point mul-
timodal model capabilities in recognition and text inference
tasks, such as 3D object point cloud captioning, and Q&A.
This benchmark also provides a critical standard for evalu-
ating 3D object generation, while current assessments often
rely on qualitative judgments from rendered images without
a direct evaluation in 3D space [47]. Only relying on ren-
dering images may lead to misunderstanding, for instance,
in the bottom right of Fig. 1, a failure case produced by 3D
generation (a bear has two bodies), makes 2D VLMs and
even humans fail to recognize its anomaly but our model
can identify with anomalies easily.

Our paper makes three major contributions:
• We present the unified framework for point-language un-

derstanding and generation GPT4Point, including the 3D
MLLM for point-text tasks and controlled 3D generation.

• Introducing the automated point-language dataset anno-
tation engine Pyramid-XL based on Objaverse-XL, cur-
rently encompassing 1M pairs of varying levels of coarse-
ness and can be extended cost-effectively.

• Establishing a novel object-level point cloud benchmark
with comprehensive evaluation metrics for 3D point cloud
language tasks. This benchmark thoroughly assesses
models’ understanding capabilities and facilitates the
evaluation of generated 3D objects.

2. Related Work

Multi-modal large language models (MLLMs). Large
Language Models (LLMs) have demonstrated robust ca-
pabilities in language comprehension, reasoning, and gen-
eralization [9, 41–43, 49, 57, 59, 64]. Building upon
this, Multimodal Large Language Models (MLLMs) ex-
tend these reasoning skills to additional modalities such
as image [14, 15, 18, 76, 78, 80], audio [5, 17, 24], and
video [7, 33, 70]. Typically, MLLMs align target features
with textual features and then integrate them with LLMs for
various text inference tasks. Some train the whole architec-
ture from scratch [25, 46] and others [3, 10, 29, 31, 36] uti-
lize pretrained LLMs. In the realm of 3D MLLMs, existing
models either rely on 2D image information [23, 82] or sim-
ply align low-quality textual phrases with points [20, 66].
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Figure 2. The model architecture of GPT4Point for training. In Stage1, we employ a Bert-based [13] Point-Q-Former for point-text
feature alignment through three point-text tasks. Then, in Stage2, an LLM is appended to train the model’s text inference capabilities. A
Point Cloud Diffusion is attached separately to train controlled text-to-3D generation which keeps the geometry shape and colors.

To solve these problems, we introduce a novel 3D MLLM
designed for diverse point-text tasks. Our model, featuring a
Point Q-Former based on Bert [13], aligns two domain fea-
tures and integrates an LLM for text-based reasoning tasks,
advancing the field of 3D multimodal understanding.

Language-driven 3D object understanding. 3D point
cloud multimodal models encompass a broad spectrum,
generally categorized into those focusing on the entire scene
containing multiple objects and those focusing on individ-
ual objects. The former places more emphasis on the rela-
tive positions of objects in the scene rather than their ge-
ometric shapes; Here, we primarily focus on the latter.
In a self-supervised way, powerful backbones like Point-
Bert [72] for object points have been obtained [44, 72].
Then, point cloud language pretraining attempts to align the
point cloud modality and the text modality. Some meth-
ods [26, 75] try to convert point clouds to depth images for
alignment with text using CLIP [48]. Tri-modal approaches
such as ULIP [21, 68, 69, 78] integrate point cloud, text, and
image data. However, these methods all exclusively use 2D
images, either explicitly or implicitly. Our work differs by
directly aligning 3D point-text modalities, completely re-
moving the dependency on image data.

Text-to-3D generation. Text-to-image generation mod-
els have experienced significant advancements recently [50,
73], yet text-to-3D models face challenges due to limited

3D data availability. Current approaches often rely on opti-
mizing Neural Radiance Fields (NeRF) representation [39]
with Score-Distillation-Sampling (SDS) loss [47]. While
these optimization-based methods [8, 34, 47, 63] still fall
short in robustness, speed, and generalization. Alterna-
tively, Point-E [40] and Shap-E [28] employ feed-forward
3D generative models trained on large, undisclosed 3D
datasets, offering better generalization and faster process-
ing. However, these models often produce random, uncon-
trollable outputs with low-quality textures. To solve these
limitations, we leverage point-text features to enhance the
controllability of feed-forward models. This approach uses
a low-quality point-text feature as a condition that allows
for maintaining specific shapes and colors, thereby enabling
the generation of higher-quality 3D objects.

3. Methods
This section provides an overview of our data text anno-

tation engine and model architecture. In Sec. 3.1, we intro-
duce Pyramid-XL, our point-language dataset annotation
engine, discussing its design, function, and the progression
from low-quality descriptions to ultimately precise and de-
tailed ones. Then, in Sec. 3.2, we delve into GPT4Point’s
architecture, explaining how to align point and text and
demonstrating how LLM and point diffusion models con-
tribute to unified understanding and generation.
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Level 3: VLM Instruction QA Pair

A red and gold tablecloth with a 
bowl, a book, and a ball on it.

One bowl and book are placed neatly on the table, while balls are placed in the bowl. 
There are three glass ball, the colors are yellow, blue, and purple, respectively. The 
tablecloth has a luxurious and elegant appearance, with a pattern of gold lines on a 
red background. The book is likely a novel or a guidebook. The overall scene 
suggests a cozy and comfortable setting, perhaps in a living room or a dining area.

Level 3: VLM Instruction Dense Caption

A bowl of objects sits 
on top of a table.

Level 2：Multi-View Systhesis Caption

What is the tablecloth made of?

The tablecloth is made of silk.

What is on the table?

The table has a red and gold tablecloth, 
a book a bowl with many balls in it.

What are the details of the 
balls inside the bowl?

There are three glass ball, the colors 
are yellow, blue, and purple.

What is the color of the tablecloth?

The table cloth is red.

The image is a 3D rendering of a table with a red tablecloth with a 
yellow pattern. There are four different views of the table shown in 
separate boxes. In each view, the table has a plate with four 
different colored crystal balls on it. There are also two books 
placed on the table, one on each side. The books are open and 
have colorful covers.

Direct Input to VLM 

Level 1：Single-View Caption

Figure 3. Pyramid-XL: An automated point-text annotation engine. Directly inputting images into VLMs yields unsatisfactory results.
We propose a progressive annotation approach with 3 levels of granularity, leveraging results from the previous level for precise outcomes.

3.1. Point-Language Dataset Annotation Engine

The public release of the large-scale Objaverse dataset [12]
and its successor Objaverse-XL [11] includes 800K and
10M objects respectively, providing a vast amount of 3D
object data. However, these objects lack corresponding text
descriptions. We plan to use the rendered images of the
objects as input and obtain textual descriptions through a
trained Vision Language Model (VLM), however, we find
that direct input of multi-view images into the VLM does
not enable it to understand their 3D structure and give pre-
cise descriptions, as shown in the top right of Fig. 3. Hence,
Pyramid-XL employs a hierarchical pipeline, evolving from
initial low-quality descriptions to achieve ultimately precise
and detailed results.

Pyramid-XL

Single-View Caption (Level 1): We use the primary
VLM model BLIP-2 [31] to generate concise de-
scriptions, approximately 10 words in length, from
a single-view rendered image.
Multi-View Caption (Level 2): This level synthe-
sizes multiple Level 1 descriptions by GPT-4 [42]
to create comprehensive multi-view captions which
has approximately 30 words.
VLM Instruction Caption and QA Pair (Level 3):
Utilizing the view with the highest CLIP score, se-
lected from textual descriptions, we engage the ad-
vanced VLM to produce detailed dense captions
and a corresponding QA dataset.

In terms of scale, Pyramid-XL is employed to annotate
over 1M objects with Level 1 captions, 660K objects with
Level 2 captions (same as Cap3D [38]), and 70K objects
with Dense Captions including QA data. To assess the im-
pact of text granularity on training, we designate the 1M
Level 1 captions as the pretrain dataset, while a smaller set
of detailed Level 3 data is used for instruction tuning. This
methodology mirrors practices in the vision field, where
models are initially pretrained on large volumes of coarser
data and subsequently finetuned on more detailed data from
specialized domains. Detailed experimental results of this
approach are presented in Sec. 5.3.

3.2. Model Architecture

GPT4Point consists of two stages as illustrated in Fig. 2.
In Stage1, we focus on point-text alignment using the Point-
QFormer, a Bert-based structure similar to the Q-Former in
BLIP-2 [31]. This stage involves supervision through three
tasks related to recognition and text reasoning. In Stage2,
only the point cloud is input into the point encoder and
Point-QFormer to obtain aligned features, which are then
devided into two branches: the LLM Branch and the Diffu-
sion Branch separately. These branches supervise text com-
prehension and object generation tasks, respectively.

Stage1: point-text feature alignment. Given a point cloud
P ∈ RN×6, where each point is represented by six dimen-
sions (XYZ coordinates and RGB color values), the initial
stage of training focuses on feature extraction. The point
encoder E processes the point cloud to yield the point cloud
feature token T p

1 = E(P ). Concurrently, the input text



goes through tokenization via the Point Q-Former’s text to-
kenizer, resulting in the text feature token T t

1 . These to-
kens, T p

1 and T t
1 , are then utilized as inputs for the Point

Q-Former FQ, facilitating the fusion of point cloud and
textual data. We jointly optimize three training objectives:
Point-Text Contrast (PTC) and Point-Text Matching (PTM),
both recognition tasks, along with Point Caption Genera-
tion (PTG), a text inference task designed for aligning point
clouds with textual data. The formulas are as follows:

L1 = FQ

(
T p
1 ,T

t
1

)
= FQ

(
E (P ) ,T t

1

)
(1)

Here, L1 represents the loss for three tasks, and we have set
the weight ratios between them all to 1. In the final layer of
E , a fully connected layer maintains consistency between
the dimensions of T p

1 and T t
1 .

Stage2: point understing and generation. After the point-
text feature alignment, we proceed with understanding and
generation tasks. It’s important to note that here we only
input the point cloud into the Point Encoder and Point Q-
Former to obtain the aligned feature. For the understanding
task, a Large Language Model (LLM) is integrated with the
Point Q-Former. The semantically integrated point cloud
features are represented as T P

2 = FQ (T p
1 ) = FQ (E (P )).

The textual feature tokens T t
2 are obtained from the LLM’s

own tokenizer. The objective function is defined as follows:

L2 = FLLM
(
T p
2 ,T

t
2

)
= FLLM

(
FQ (E (P )) ,T t

2

)
(2)

FQ indicates Point Q-former including a fully connected
layer in its last layer to ensure consistency between the di-
mensions of T p

2 and T t
2 . L2 represents the loss function

from the Point Caption task alone.

For 3D object generation, we utilize the features ob-
tained from low-quality point clouds via the Point Q-Former
as conditions inputted into the text-to-3D framework. This
process results in the generation of refined 3D objects that
maintain consistency in shape and color with the original
point cloud. A notable distinction from the LLM branch
is that we have not only frozen point cloud diffusion but
also frozen Point Q-Former. As shown in Fig. 2, we em-
ploy a single fully-connected layer to project the aligned
features into the CLIP token embedding space, referred to
as T p

3 , and then concatenate these with the original text em-
beddings T t

3 using the CLIP tokenizer. The output from
the CLIP text encoder, enriched with information from the
original point cloud, is instrumental in enabling effective
text-to-3D generation. The final output is achieved using
Point-E. This framework is inspired by BLIP-Diffusion [30]
techniques used in subject-driven 2D generation. However,
the key distinction here from BLIP-Diffusion lies in the way
we concatenate the Clip text token and Q-Former feature.
This difference may also stem from variations in the data
volumes between 2D and 3D, which will be thoroughly ex-
amined in the appendix.

4. Benchmarks and Evaluation
Evaluating the performance of multimodal models

presents significant challenges due to the lack of mature
metrics for assessing the quality of generated texts. For
3D objects, benchmarks primarily rely on human judgment
or GPT-based assessments [66]. There are two key issues
to consider in this context. Firstly, the evaluation process
involves a certain degree of subjectivity. Identical results
might receive varying scores, leading to an element of ran-
domness. Secondly, each evaluation incurs time and mone-
tary costs. In this section, we present the evaluation bench-
mark we have proposed, which is primarily designed to be
objective, ensuring repeatability and verifiability. Sec. 4.1
outlines the composition of our test set. Sec. 4.2 addresses
the evaluation of recognition capabilities, while Sec. 4.2
provides a detailed assessment of text inference abilities.

4.1. Composition of Test Set

We leverage the Objaverse dataset [12], aligning it with
LVIS categories [22], to create Objaverse-LVIS validation
and test sets. In Objaverse-LVIS, we exclude scenes with
complex settings, such as indoor houses or outdoor parks,
focusing more on scenarios with single objects or combi-
nations of multiple objects. We construct validation and
test sets, each containing 1K objects. Compared to the
PointLLM [66], which uses only 200 unfiltered objects as
a test set, our larger set of 1K objects better measures the
model’s generalization capabilities. For textual descrip-
tions, we initially use Pyramid-XL to get initial annotations,
followed by multiple rounds of expert manual revisions, en-
suring comprehensive and accurate descriptions.

4.2. 3D Object Recognition

3D object recognition represents the classification capa-
bilities of 3D multimodal models and the ability to match
point cloud features with textual features. Objective mea-
sures, like accuracy, are typically used for evaluation.
Zero-shot point classification. Zero-shot point classifica-
tion is considered a classic task in this domain. The widely
used ModelNet40 dataset [65], which includes 2,468 ob-
jects across 40 categories, serves as a benchmark to evalu-
ate a model’s classification capabilities. In the multimodal
context, the typical approach involves using the text ’a 3D
model of [name]’ as input to match with the point cloud
modal features. The accuracy metric ACC@1, indicating
the precision of top-1 rankings, best reflects the model’s
ability to accurately match object categories.
3D point-text retrieval. In 3D Point-Text Retrieval, we
initially select 128 candidates based on point-text feature
similarity and then re-rank these candidates using matching
scores. Unlike classification tasks where the text usually
involves simple category names, here the text can be more



Figure 4. Examples of text inference using the GPT4Point with ViT-g and OPT6.7B after Instruct Finetuning. The table showcases
its proficiency with point cloud input, excelling in tasks like detailed caption generation and point cloud-based question answering. This
underscores our model’s profound grasp of point cloud geometry and color, translating them into meaningful semantics.

complex descriptions. The evaluation metrics used are sim-
ilar to those in image-text retrieval. We employ R1, R5, and
R10 metrics to measure the accuracy of the top 1, 5, and 10
results in correctly matching points to text and vice versa.

4.3. 3D Object Text Inference

3D object text inference deeply represents the understand-
ing capabilities regarding objects, including 3D object point
cloud captioning and 3D point cloud question answering.
3D point cloud captioning. This task primarily evalu-
ates the model’s ability to provide an overall summary of
a 3D object. The captions in the Objaverse-XL-LVIS cap-
tion test set are mostly within 30 words and accurately
describe the object’s geometry, color, and state. And we
predominantly employ common image description met-
rics, such as BLEU1, BLEU4, METEOR, ROGUE-L, and
CIDEr [4, 35, 45] for evaluation.
3D point cloud question answering. In addition to point
cloud captioning, 3D point cloud question answering ex-
plores object details through multiple rounds of dialogue.

For instance, we can further explore the color or shape of
specific parts of an object or even infer its simple usage. The
curated Objaverse-XL-LVIS short QA 1K test set features
concise, straightforward questions and answers, allowing us
to conveniently calculate answer accuracy. Besides accu-
racy, we also use metrics from captioning to evaluate model
performance. It is important to note that, for a fair com-
parison, we solely utilize zero-shot learning, meaning no
fine-tuning is conducted on this kind of short QA dataset.

5. Experiments
5.1. Training Details

We configure our setup to process 8,192 input point
clouds, utilizing Point-BERT [72] as the backbone. This
transformer-based network excels in capturing geometric
and semantic features of object point clouds. And the back-
bone is pretrained through retrieval tasks like ULIP-2 [69].
We employ OPT [77] and FlanT5 [49, 64] as Large Lan-
guage Models (LLMs). For the training process, we adopt
an initial learning rate of 1e-4, weight decay of 0.05, batch



Model Input Data Type
ObjaverseXL-LVIS Retrieval (1K test set) ModelNet40[65]

Point → Text Text → Point Accuracy
R@1 R@5 R@10 R@1 R@5 R@10 Acc@1

Image-Text Modal
BLIP-2 Single-View Image

(Mesh with Color)
17.56 41.16 52.82 16.72 40.2 52.56 35.62

InstructBLIP† 20.4 43.1 55.3 13.7 32.5 42.7 31.48

Point-Text Modal
PointLLM(Vicuna-7B)†

Point Cloud (+Color)
- - - - - - 41.33

GPT4Point 32.2 64 81.3 89.7 98.1 98.9 43.90

Table 1. Point-Text Retrieval on the Objaversexl-LVIS test dataset and zero-shot 3D classification on ModelNet40. Please note that
† denotes Generative 3D object classification, which refers to the process of classifying 3D objects based on the generation of captions.

Model
#Trainable
Params

ObjaverseXL-LVIS Caption (1K test set) ObjaXL-LVIS QA (1K)
BLEU1 BLEU4 METEOR ROUGH-L CIDEr Acc BLEU1 ROUGH

Image-Text Modal
BLIP-2 (OPT2.7B) 188M 22.2 3.0 10.3 28.2 32.3 13.4 14.2 16.8
BLIP-2 (OPT6.7B) 188M 24.9 4.1 11.5 30.0 44.2 15.4 15.1 18.3
InstructBLIP(Vicuna-1B) 202M 25.5 4.3 11.6 30.7 47.2 15.9 16.2 20.1
Qwen-VL(Qwen-7B) 7.2B 27.1 4.9 13.1 31.3 63.8 18.2 19.5 24.4

Point-Text Modal
PointLLM (Vicuna-13B)† 13.3B 26.2 4.9 11.9 31.3 50.9 23.4 22.3 26.2
GPT4Point (OPT2.7B) 110M 28.9 6.0 13.2 33.9 68.4 22.1 23.4 25.3
GPT4Point (OPT6.7B) 110M 31.5 7.2 13.8 35.4 78.7 27.1 26.2 30.4
GPT4Point (FLANT5XL) 110M 32.2 7.2 14.2 35.5 78.0 27.6 26.3 31.3

Table 2. 3D Object Point Caption and Question Answer (QA) on the Objaversexl-LVIS 1K test dataset. For the BLIP series, only
fine-tuning of the Q-Former structure is required, whereas models like PointLLM need fine-tuning of the large language model.

size of 32, and the AdamW optimizer [37]. All hyperparam-
eters remain unchanged in both stages. The training process
takes 10 epochs for each stage on 8 A100 GPUs.

5.2. Evaluation and Diverse Tasks

We evaluate our model on the benchmark we proposed in
Sec. 4, which includes 3D object recognition and 3D object
text inference. Additionally, we demonstrate the model’s
capability for controllable text-to-3D generation.
3D object recognition. Recognition capabilities are shown
in Tab. 1, with zero-shot classification results on the right
side. Our approach demonstrates superior performance,
outperforming the Vision Language Model(VLM) Instruct-
BLIP [10] by 12.42 points and surpassing PointLLM [66]
by 2.57 points. Notably, PointLLM employs a generative
approach to generate the text results by a prompt, lim-
iting its direct recognition capabilities. The results for
3D point-text retrieval are shown on the left side. Our
GPT4Point model outperformed other VLMs [3, 10, 31].
The results quantitatively highlight the challenges of single-
viewpoint 3D object occlusions and biases, emphasizing
our approach’s advantages over other image-text models.
3D object text inference. Model’s text inference capabili-
ties are displayed in Tab. 2. On the left, the results of 3D ob-

ject point cloud captioning confirm GPT4Point’s superior-
ity over pretrained VLMs and PointLLM. Notably, the Point
Q-Former structure allows freezing the LLM, significantly
reducing training parameters. The results for 3D point cloud
question answering on the right side show that GPT4Point
achieved the best zero-shot accuracy, surpassing Instruct-
BLIP [10] by 11.7 points and outperforming PointLLM [66]
by 4.2 points. Alongside quantitative results, Fig. 4 qualita-
tively demonstrates its detailed answers and multi-turn dia-
logue capabilities, with more examples in the appendix.

Controllable text-to-3D object generation. Here, we
showcase the generative capabilities of our model. Given
features of low-quality point clouds along with textual de-
scriptions, we can generate corresponding higher-quality
point clouds, making text-to-3D more controllable. Fig. 6
displays experimental results, We compare our point feature
condition with text or single image condition in Point-E,
demonstrating that aligning features using both point cloud
and textual information significantly improves guidance for
point cloud generation. It is worth noticing that when com-
pared to a single view image rendered from the original 3D
model, our Point Q-former feature serves as a better con-
dition that contains richer information about the geometric
shape and detailed color information of 3D objects. We be-
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Figure 5. Object generated from Point-E fine-tuned on Cap3D [38] and our Pyramid-XL The first line shows Cap3D [38] fine-tuning
results, while the second, using our Pyramid-XL Level 3 Dense Caption, outperforms Cap3D in geometry and color. This underscores the
high quality of our text annotations.
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Figure 6. Point-E generation result when conditioned on text,
single image and our Point-Q-former features

lieve this is the first step towards the point cloud editing.

5.3. Assessing the Effectiveness of Pyramid-XL

In this section, we demonstrate the effectiveness of
Pyramid-XL in obtaining high-quality point-text annota-
tions. We focus on two tasks: fine-tuning Point-E [40] for
3D object generation using dense captions and utilizing an-
notations of varying granularities on the QA benchmark.
Finetune the Point-E with Level 3 Caption. We fine-
tuned Point-E [40] base-40M text-vec model using 70K
Level 3 VLM instruction captions from Pyramid-XL for
3D object generation. The results in Fig. 5 show signif-
icant improvements in geometric details and and color fi-
delity in point clouds, especially in objects like baskets and
Halloween costumes, compared to Cap3D [38].
Ablation study in model pretraining. Our ablation studies
on Pyramid-XL, detailed in Tab. 4, investigated the impact
of pretraining data scale and quality on model performance.
The comparison between the first two rows indicates that
using a large volume of coarse annotations boosts baseline
performance. Additionally, incorporating a higher propor-

Text-to-3D methods
Rendering Eval User Study

FID ↓ CLIP Score Score(1-5)

Direct text-to-3D 34.7 74.9 3.98
Direct image-to-3D 32.6 75.3 3.67
Controllable text-to-3D 31.6 76.2 4.03

Table 3. Different 3D generation methods on the Cap3D, 2K test
set. Our controllable text-to-3D achieved the best results.

Level of Pyramid-XL
3D Object QA
val test

Level 2 22.3 22.1
Level 1 + Level 2 25.6 25.4
Level 1 + Level 2 + Level 3 (30%) 27.3 27.1
Level 1 + Level 2 + Level 3 (70%) 28.3 28.2
Level 1 + Level 2 + Level 3 (100%) 28.5 28.4

Table 4. the impact of text granularity. Levels 1, 2, and 3
represent coarse single-view annotation, multi-view annotation,
and fine-grained annotation, respectively. We utilize the large
language model OPT2.7B for pretraining and evaluation using
ObjaverseXL-LVIS validation and test sets after finetuning.

tion of detailed Level 3 annotations leads to improved QA
scores, with 80% yielding near-optimal results.

6. Conclusion
We introduce the innovative GPT4Point, a Unified Frame-
work for point-language understanding and generation in-
cluding the 3D MLLM for point-text tasks and controlled
text-to-3D generation based on low-quality point feature.
We develop Pyramid-XL, a point-language dataset annota-
tion engine. This setup constructs a large-scale database
over 1M objects of varied coarseness levels from the
Objaverse-XL dataset. Furthermore, we establish an object-
level point cloud benchmark with specific metrics for eval-
uating 3D point cloud-language tasks. This benchmark pro-
vides a comprehensive approach to assess both the under-
standing abilities of 3D multimodal language model and the
quality of generated objects.



A. Supplementary Material Introduction
In this supplementary material, we extend the discus-

sions presented in the main conference paper. Sec. B pro-
vides a more in-depth exploration of related work, focusing
on defining the scope of large language models family and
examining the developments in point-text multimodal ap-
proaches. Sec. C supplements more details about the data
annotation engine: Pyramid-XL and the diffusion architec-
ture. Moving to Sec. D, we expand on the superiority of
our benchmark. Initially, we introduce examples from our
ObjaverseXL-LVIS QA 1K dataset, which includes con-
cise QAs for evaluation and long QAs for instructive tun-
ing. Then we show more 3D generation failure cases where
GPT4Point can figure it out while 2D VLM can not to un-
derscore the necessity and relevance of our 3D point-text
benchmark. Finally in Sec. E, we give more qualitative re-
sults of Point-text inference tasks including caption and QA
tasks and Controllable point diffusion.

B. Additional Related Work
In this section, we provide detailed insights into re-

lated work. Sec. B.1 classifies key concepts of large
language models, including LLMs, MLLMs, and VLMs.
Sec. B.2 present the evolution of point-text multimodal
models through an illustrative flowchart.

B.1. The Family of LLMs and MLLMs

Large Language Models
 (LLMs)

Multi-modal Large 
Language Models (MLLMs)

Vision Language Models
 (VLMs) = 2D MLLMs

Audio MLLMs 3D MLLMs...

The Family of 
LLMs and MLLMs.

Figure S1. The Family of LLMs and MLLMs.

Although the concepts related to large language mod-
els are already familiar, we still wish to detail these con-
cepts here. We briefly introduce some families of LLMs
and MLLMs. First are the LLMs based on the Trans-
former architecture, such as ChatGPT [41] and GPT-4 [42].
Currently, there are several open-source, deployable mod-
els [9, 59, 64, 77]. After extensive pre-training on a vast
corpus, they exhibit strong comprehension and reasoning
abilities. Multimodal Large Models (MLLMs) aim to en-
able LLMs to understand information in other modalities.
The fundamental approach involves retrieving text features
with other modality features. Among them, image-text mul-
timodal large models, also known as 2D MLLMs or Vi-
sual Language Models (VLMs), stand out due to the abun-
dant image-text pairs and strong image backbones provided

by computer vision [31, 36]. Beyond images, there are
other modalities, such as Audio MLLMs [24] that combine
with the audio modality and Video MLLMs with the video
modality [7]. In the 3D domain some existing work, like
3D-LLM [23], utilizes 2D image features combined with
depth projections to generate 3D features. We propose a
unified text understanding and generation model based on
point clouds and develop a real 3D MLLM.

B.2. The development of Point-text Multimodal

Q1 Q2 QN

Q1·T1

Q2·T2

QN·TN

T1

T2

TNTransformer

Point-text 
Pretraining

Large Language Model

3D (Point) 
MLLMs

Point Self-surperised 
Learning Backbone

Figure S2. The development of Point-text Multimodal.

In this section, we delve into the evolution of point-text
multimodal models for single objects.
• Backbone Development: The foundational aspect of our

methodology lies in the robust development of the back-
bone for handling point clouds. Similar to the method-
ologies applied to texts and images, point clouds undergo
a self-supervised training strategy to establish a strong
foundation. Notably, we leverage the innovative Point-
Bert [72] framework, which divides point clouds into
patches and executes a reconstruction process on masked
patches. This is achieved through the utilization of a
Transformer-based backbone, imparting a powerful and
adaptive feature extraction capability to our model.

• Text Modality Alignment: Drawing inspiration from
the successful model CLIP [48], our approach incorpo-
rates a phase dedicated to aligning point patches with
textual features. This strategic alignment augments the
backbone’s inherent ability to process textual informa-
tion seamlessly. By fusing the spatial understanding of
point clouds with the semantic richness of textual data,
our GPT4Point achieves a more comprehensive and nu-
anced representation, enhancing its overall performance.

• 3D MLLMs Integration: Building upon the successful
alignment of point patches with textual features, the next
crucial step involves the integration of point features into
Large Language Models (LLMs). This integration mir-
rors approaches seen in Vision Language Models (VLMs)
and extends their capabilities to comprehend and interpret
point cloud data. The seamless fusion of 3D spatial infor-
mation with the linguistic context empowers Large Lan-
guage Models (LLMs) with a more holistic understanding
of the data, enabling them to discern intricate patterns and
relationships within the point clouds.



C. Additional Method
Here, we provide additional information to our method.

We first give more details about the data text annotation en-
gine Pyramid-XL in Sec. C.1. And then, in Sec. C.2 about
the model architecture, we give the details about the point
diffusion branch.

C.1. Pyramid-XL: Data Annotation Engine

First, we introduce the approach to acquire point cloud
from Objaverse-XL [11]. Then we introduce the cost and
prompts of the our data annotation engine Pyramid-XL.
Finally, we give more qualitative results that finetune the
Point-E [40] by our Pyramid-XL level 3 dense captions.

Subdir

Subsubdir

Other file

Targrt mesh
Material

RGB 
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Depth... ...

...

...

20 Views, in a sphere
(Save)(Delete)

Figure S3. Acquire Data Pipeline from Objaverse-XL [11].

Acquire data from Objaverse-XL. Here we detail our pro-
cessing approach for the Objaverse-XL dataset [11]. It
has 10M objects and is the extension of Objaverse-1.0 [12]
which only has 800K 3D objects. Objaverse-XL offers only
unprocessed downloads for its 3D objects, most of which
originate from sources like GitHub. Downloading these
mesh files necessitates obtaining the complete project, as
materials and related components are often stored in other
separate directories. Downloading the raw dataset in this
format is impractical due to excessive memory require-
ments, with an average project consuming about 1GB of
space. Therefore, we render object images and clear the
cache upon completion to manage space. We render 20 ran-
dom views of each object, capturing the RGB, alpha values,
and depth, which are then used to generate point clouds. In
addition to the 780K objects from Objaverse-1.0, we ren-
dered an additional 220K from Objaverse-XL, totaling 1M
objects.
The cost of the Pyramid-XL. We now turn our attention
to the cost analysis of our data annotation engine, detailed
in Tab. S1. The primary costs, detailed under the ’1K
Cost’ column, include GPU resources on the left and GPT
API usage on the right. We use the same GPU settings as
Cap3D [38], employing A40s on a identical cloud platform.
Given GPUs’ parallel processing, costs are equal for single
or multiple units. We calculate usage time assuming a sin-
gle GPU for simplicity. For Level 1, we use BLIP-2 [31]

Dataset Num Obj Data Type Cost/K (GPU + GPT)

Level 1 1M Single-View Caption $0.47 + $0
Level 2 (GPT-4) 660K Multi-View Caption $4.17 + $4.18*
Level 2 (ChatGPT) 660K Multi-View Caption $4.17 + $0.14*
Level 3 70K QA, Detailed Caption $1.64 + $0

Table S1. Comparing Costs across Different Dataset Levels.
Costs are calculated based on generating annotation for 1K ob-
jects. * is directly from Cap3D [38]. As levels increase, the cost
rises, indicating larger scales for lower-level datasets.

to generate one short caption for one object. It needs 0.074
hours and costs 0.074h × $1.28/h = $0.095. For Level 2
the cost is the same as the Cap3D [38]. The GPU resource
fees include BLIP-2 [31] and CLIP [48]. BLIP-2 generates
8 views for each object and each view has 5 captions, so the
fee is $0.095 × 8 × 5 = $3.76. And the CLIP uses 0.3h
and costs 0.3h × $1.28/h = $0.38. All GPU resource fee
is $3.76 + $0.38 = $4.17. For the GPT API fee, it costs
$0.03/1k tokens and needs 139.3 tokens for each object and
the total cost is $139.3/1000k×$0.03/1k×1000 = $4.18.
For Level 3, We use the open-source Visual Language
Model (VLM) Qwen-VL [3] for processing the final cap-
tions. It needs 1.28h for the CLIP filter and Qwen-VL gen-
eration captions, so the cost is 1.28h× $1.28/h = $1.64.

We can observe that Level 2 captions account for most
of the costs, primarily due to GPT usage fees. Our findings
show that using GPT-4 for text-based multi-view caption
synthesis doesn’t substantially outperform ChatGPT. Fur-
thermore, by utilizing open-source Large Language Models
(LLMs), we can entirely eliminate API call expenses. The
other major cost is the GPU resources, as it uses BLIP-2
to generate five captions for each view, which can lead to
redundancy in information. We can reduce the number of
captions for each view, and even the number of views.
The prompts of the Pyramid-XL. We present the prompt
part of the Pyramid-XL data text annotation engine, as il-
lustrated in Fig. S6 and Fig. S7. We primarily focus on
illustrating how to construct GPT-based Level 2 captions,
ChatCaptioner-based Level 3 short QA pairs, and MLLM-
based Level 3 instruction captions and long QA pairs.

For Level 2 captions, we use Level 1 captions of rendered
images from 6 views. Through carefully designed prompts,
we integrate captions from the 6 captions to obtain a com-
prehensive and relatively accurate caption with fewer than
30 words. In our paper, we use GPT-4 to get the compre-
hensive caption but we find that ChatGPT can be replaced
by GPT-4 to generate Level 2 captions to reduce the cost.

For Level 3 short QA, we follow the approach outlined in
ChatCaptioner [79]. We use ChatGPT or other LLMs (we
choose Vicuna-7B [9]) as the questioner and BLIP-2 [31]
as the answerer. By providing appropriate instructions and
context (Level 2 caption) to both the LLM and BLIP-2, we
observe that, LLM generate diverse questions that that in-



clude aspects such as color, type, material, purpose, and
more. Also, without restricting the number of words, BLIP-
2 tends to output concise answers. These form the basis for
our Objaverse-XL short QA dataset.

For Level 3 dense captions, we use the Level 2 caption
as context, feed the rendering image that best matches the
context into MLLM, and input suitable instructions. Due to
a combination of high-quality conversational performance
and cost-effectiveness, we choose the Qwen-VL [3] model
to generate. The construction method for Level 3 instruc-
tion (long) QA pairs is similar to the above steps, with the
key difference lying in the variation of instructions.

The effectiveness of Pyramid-XL Level 3 caption. We
use dense captions from Level 3 of Pyramid-XL to fine-tune
Point-E and compare the results with those of Cap3D, as
shown in Fig. S11. Ours significantly outperform Cap3D’s
captions, demonstrating the precision of our captions.

C.2. Point Diffusion Architecture

Point
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Encoder

Point-E

 A bowl of objects 
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CLS Token
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Figure S4. Point Diffusion with GPT4Point.

Currently, there are indeed some explorations into con-
trollable text-to-3D work [27, 60, 61]. However, we are
attempting to combine understanding and controllable 3D
generation together. Here, we offer an in-depth look
at the Diffusion branch’s structure in Stage 2, illustrated
in Fig. S4. Initially, the point cloud undergoes process-
ing via the Point Encoder (Backbone) and Point Q-Former,
yielding Q-Former Tokens. For text, instead of the Point
Q-Former’s text tokenizer, we utilize Point-E’s CLIP to-
kenizer. The resulting text tokens are then concatenated
with the Q-Former Tokens. Subsequently, the CLS to-
ken from the Text Token is fed into Point-E. The concate-
nation method in GPT4Point differs notably from BLIP-
Diffusion [30]. In BLIP-Diffusion, Q-Former Tokens are
inserted between the CLS token and input tokens. In con-
trast, GPT4Point appends Q-Former Tokens directly to the
text token sequence, allowing the CLS token to integrate
both geometric and color information, crucial for guiding
the 3D generation.

D. Additional Benchmark

In this section, we mainly introduce some additional con-
tents about the benchmark. In Sec. D.1, we give more exam-
ples of the ObjaverseXL QA dataset. Note that the short QA
dataset is used for evaluation based on the accuracy met-
ric. Then in Sec. D.2, we show more qualitative results
about Generation Failure Cases which can not be recog-
nized by 2D VLMs through a single view but are judged
by our GPT4Point.

D.1. Objaverse-XL QA Dataset

Short QA Dataset We use the short QA dataset for the
evaluation of the 3D point cloud question answering task.
We selecte categories that overlap with both Objaverse-XL
and LVIS [22], constructing 1K Point-QA data as the test
set. The specific samples are presented in Fig. S8, which
includes questions covering various aspects such as color,
material, composition, category, etc. The answers are con-
cise, with an average word length of 2.32, making them con-
venient for testing. We use accuracy top-1 as metric and
evaluate the model’s zero-shot short QA capability on this
dataset.

Long (Instruction) QA Dataset The long (Instruction) QA
dataset is for finetuning the model to significantly enhance
the model’s conversational capabilities. We impose length
constraints on prompts, requiring approximately 50 words
for answers to dense caption questions and not less than 10
words for other questions. As illustrated in Fig. S8, we con-
structed a Long (Instruction) QA dataset for 70K objects,
comprising 344,996 QA pairs. Among these, 69K data are
used for fine-tuning, while the remaining 1K are reserved
for testing. This aims to encourage LLMs to generate long
and more comprehensive results.

D.2. Anomalous Objects: Generation Failure Cases

In this section, we will demonstrate more qualitative re-
sults to show the failure case which can not be recognized
by 2D VLMs through a single view but can be judged by
our GPT4Point. In this section, we mainly show the failure
cases produced by the state of the arts text-to-3D genera-
tion methods like Dream-Gaussian [56] and Fantasia3d [8].
Due to technical constraints, these models are likely to gen-
erate 3D objects with multi-heads or multi-bodies. If pro-
vided with render images from only a single perspective, 2D
VLMs [3, 9], and even humans in most cases, may make in-
correct judgments, as illustrated in the upper part of Fig. S9.
This hinders the assessment of 3D object generation. How-
ever, our GPT4Point provides a better solution to this issue.
More examples are showcased in Fig. S9.
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Figure S5. Point Diffusion Results: our controllable text-to-3D. Given a low-quality point cloud prior, it can generate outcomes superior
to direct text-to-3D and image-to-3D methods and more closely align with the low-quality priors, demonstrating controllability.

E. Additional Experiments
In this section, we supplement the details of the exper-

iments. First in Sec. E.1, we list all the hyperparameters
through the table. Then We give more qualitative results
about our experiments. Sec. E.2 shows the text reference
tasks like 3D object point caption and QA and Sec. E.3
shows our point diffusion results.

E.1. Training Details

Hyperparameters Value/Type

batchsize 32
training epochs 10
optimizer AdamW
init lr 1e-4
min lr 1e-5
warmup lr 1e-6
weight decay 0.05
lr schedule cosine annealing
warmup type linear
warmup iters 5000

Point size 8192
Q-Former queries 32

Table S2. Training settings and hyperparameters for Stage1.

We detail the hyperparameters of GPT4Point, largely
mirroring those used in BLIP-2 [31] during the pretrain
stage. These parameters are maintained for Stage1: Point-
text alignment and the LLM branch in Stage2. Tab. S2 lists
them. The parameters for the LLM branch in Stage2 are
almost identical to those of Stage1, except for the warm-up
iterations, which changed from 5K to 2K. For BLIP-2, after
pretraining on multiple datasets, fine-tuning is performed on

a smaller dataset and subtasks. Additionally, different im-
age backbones were used in the pretraining and fine-tuning
phases. But in our GPT4Point, we only use the pretrain
stage in the BLIP-2 and all tasks are evaluated by zero-shot.
For the diffusion branch, we need to make the learning rate
very small because here we only train the fully connected
layers. The init, min and the warmup learing rate is 1e-7, 0
and 1e-8, and we only train 1 epoch.

E.2. Point-text Captions and QA Demos

In this section, we show more point-text qualitative re-
sults of GPT4Point. More specific examples are presented
in Fig. S10. We can see that GPT4Point is capable of effec-
tively understanding point clouds and can engage in fluent
conversations with humans.

E.3. Point Diffusion Results

Fig. S5 shows more qualitative results of point diffusion
results of GPT4Point. We find that GPT4Point can guide
text-to-3D processes, generating results with more accurate
colors and geometric shapes.

Content Figure

Sec. C.1: Prompts of Level 2 caption Fig. S6
Sec. C.1: Prompts of Level 3 long QA Fig. S7
Sec. C.1: Level 3 caption finetune Point-E Fig. S11

Sec. D.1: ObjaverseXL-LVIS QA 1K Fig. S8
Sec. D.2: Generation Failure Cases Fig. S9

Sec. E.2: Point-text Captions and QA Fig. S10
Sec. E.3: Point Diffusion Results Fig. S5

Table S3. Chapter-Experiment Result Image Correspondence.



ChatGPT-based Level 2 Caption

Instruction

You'll be showed 6 different angles descriptions(such as front, side and back view) of an object/scene, please 
tell me what is it(usally a singular thing/a scene, you must judge) and its feature. 
Notice: There are errors in the description of some angles(due to occlusion or improper angle), and you need to 
combine all the descriptions of the same object/scene and identify possible error descriptions(please fix this 
error directly, don't tell me) of this singular thing.
Descriptions: {context}
Tell me what is it and its feature(if mentioned) in less than 30 words, please don't be redundant. 
Unwanted words: 'background', 'render', 'grey', 'image', 'foggy', '3D', '2D', 'surface'
Reply: It is 

Context
View1: a 3d character standing on a wooden floor in a gray hat     View2: this is an image of the boy wearing a hat  
View3: a rendered 3d model of a man with glasses        View4: a 3d rendering of a little boy with glasses and a hat
View5: cartoon child with blonde hair in a hat and sweater    View6: a 3d looking character with a hat and jacket on

Output

A character wearing a hat and glasses, possibly a little boy, with blonde hair and a jacket.

ChatCaptioner-based Level 3 Short QA

I have an image of a 3D thing. Ask me 
questions about the content of this image.

Carefully asking me informative and 
specific questions to maximize your 
information about this image content. Each 
time ask one question only without giving 
an answer.

If it is an object, ask me about its 
geometry shape, composed of what, 
quantity, usage and indicate what each 
object is (if multiple) and especially some 
specific details. If it is a person/catoon 
character, ask me about its wearing, its 
posture, what it is doing and its possible 
job. If it is a house, ask me questions 
about its components, its surroundings and 
its type or shape. You are free to play with 
some questions depending on the context, 
but don't be unrealistic.

Avoid asking colors. Avoid asking materials. 
Avoid mention the background. Don't ask 
repeated questions! 

Instruction

ChatGPT / Vicuna
Questioner

BLIP2
Answerer

Context

Tell me details about the image.
A 3D cartoon character wearing 
glasses, a hat, and a yellow hoodie.What kind of thing it is?(object, person, 

cartoon character or house)

Cartoon character

Is the hoodie a zipper or a pullover?

Pullover

Is the hat a cap or a fedora?

Cap

Does the cartoon character have 
any visible tattoos or markings?

No

Does the cap have any visible 
logos or patterns on it?

No

What color is the hoodie?

Yellow

Figure S6. Prompts of Level 2 Caption and Level 3 Short Q&A in Pyramid-XL. We present the construction process of GPT-based
Level 2 Caption and ChatCaptioner-based Level 3 Short Q&A, along with the prompts utilized, consisting of context and instruction.



MLLM-based Level 3 Instruction Caption

Instruction

Analyze the 3D object model from the image and the given caption: "{context}" 

Write a new `detailed` caption by describing it in more words(no less than 50 words), identifying its type, 
appearance, and any other inferred information such as functionalities, usages, daily-life knowledge, etc. 
Exclude any uncertain details. Use rich language descriptions.

Context
Blue and white acoustic guitar 3D model, royalty-free.

Output

MLLM-based Level 3 Instruction QA pairs

Analyze the 3D object model from the image and the given caption: "{context}"
Generate a set of 1-round Q&As(both question and answer pairs) regarding diverse aspects of the object 
based on the image and provided captions. Question begin with 'Q:'. Answer begin with 'A:'. Don't mention size. 

Continue to generate 1 single-round Q&As(both question and answer pairs) regarding diverse aspects of the 
object based on the image. Don't mention size. Different aspects from the previous questions. 

Continue to generate 1 single-round Q&As(both question and answer pairs) regarding diverse aspects of the 
object based on the image. Don't mention size. Different aspects from the previous questions. The answer should 
be more than 10 words, but should not be too redundant with the question.
……

Instruction

The 3D object model is a blue and white acoustic guitar. It has a classic design with a wooden body 
and a rosewood fretboard. The guitar is painted in a distressed style, giving it a vintage look. This guitar is 
a high-quality, royalty-free model that can be used for various purposes, such as in music videos, 
advertising, or as a decorative item.

Level2 Caption

CLIP
max

Qwen

GPT-4

or
50 words

Answer

Question

Instruction QA Pairs 

Level3 Instruction 
Caption and QA pairs

Instruction Caption

Context
Blue and white acoustic guitar 3D model, royalty-free.

Output

What is the purpose of the acoustic guitar?

The acoustic guitar is a musical instrument that 
is used to create music by plucking the strings. 

It is commonly used in a variety of musical 
genres, including folk, rock, and classical music.

Instruction Data Generation

What is the color of the guitar?

What is the color of the guitar?

What is the material of the guitar?

The guitar is made of wood.

Figure S7. Prompts of MLLM-based Level 3 Instuction Caption and QA pairs in Pyramid-XL. The top part details the process of
constructing the dataset, while below are the specific instructions provided to the MLLM (Qwen-VL[xx]) and the model output.



What is the purpose of 
the flower pot?

Yellow and white.

What is the purpose of the 
grand piano?

What does the grand piano 
consist of?

What is the composition of the 
grand piano?

3D model of a blue and yellow 
Nike Air Swoosh high-top sneaker 
with a yellow sole.

What does the object look like?

Tell me details about the image.

A shoe.

Is the shoe a sneaker?

Yes.

What is the color of the shoe?

Blue and yellow.

Is the sole of the shoe yellow?

Yes.

Tell me details about the image.

A 3D model of a black 
grand piano.

It is made of wood.

A keyboard and a case.

To play music.

Tell me details about the image.

3D model of a skateboard 
with red wheels.

What color are the wheels?

How many wheels does 
the skateboard have?

What is the color of the 
skateboard?

Black.

4.

Red.

3D model of a blue and yellow 
Nike Air Swoosh high-top sneaker 
with a yellow sole.

What is the color of the flower pot?

Tell me details about the image.

What kind of flower is in the pot?

No flower.

Is it made of ceramic or plastic?

Ceramic.

To hold flowers.

The cupcake is placed 
on a blue plate.

What is the main ingredient of the 
cupcake?

What is the design of the 
racing car

The racing car has a white and 
red color scheme, with black 
accents on the wheels and other 
parts of the car.

What is the purpose of the 
saxophone?

What is the dish the 
cupcake is placed on?

The main ingredient of the 
cupcake is flour.

What is the purpose of the 
filigree design on the ring?

What is the color of the ring?

What is the shape of the ring?

Yellow saxophone.

What is the color of the saxophone?

The saxophone is yellow.

What is the shape of the saxophone?

The saxophone is curved and 
cylindrical in shape.

The saxophone is a musical 
instrument used in jazz and 
classical music, known for its 
distinctive sound and versatility.

A yellow gold ring with an 
intricate filigree design.

The ring has a round shape, 
with a filigree design on the top.

The ring is yellow gold, which 
gives it a warm and luxurious 
appearance.

The filigree design on the ring serves 
as a decorative element, adding an 
intricate and elegant touch to the 
overall appearance of the ring.

3D model of a racing car.

What is the purpose of the 
racing car?

What is the color scheme 
of the racing car?

The purpose of the racing car 
is to compete in a rally race.

The racing car has a sleek and 
aerodynamic design, with a low 
profile and wide wheels.

3D model of a cupcake with a 
cherry on top, placed on a plate.

What is on top of the 
cupcake?

There is a cherry on top of 
the cupcake.

Figure S8. Objaverse-XL QA dataset. The upper section of the dataset features short Q&A samples, and the lower part includes long
Q&A samples, covering color, shape, type, material, and purpose. The short Q&A dataset evaluates performance, while the long Q&A is
for fine-tuning, promoting more detailed language generation and promote the understanding and conversational capabilities.



Does it have one body or multiple bodies?

The 3D object model is made up of multiple 
bodies, each with a different shape and size.

How many tails does it have?

It has two tails, one on each side.

How many heads does the bird have?

There are two heads on the bird.

Is the frog one head?

No, the frog has two heads.

GPT4Point

Does it have one body or multiple bodies?

The image depicts a single body performing a 
trick on a bicycle.

How many tails does it have?

The image shows a rooster with two tails.

How many heads does the bird have?

The bird in the image has a head.

Is the frog one head?

Yes, the frog has one head.

2D MLLM

Figure S9. Anomalous Objects: Generation Failure Cases. The upper and lower parts respectively depict the performance of 2D MLLM
and GPT4Point in identifying abnormally generated objects with multi-body and multi-head structures. GPT4Point is effective in making
accurate judgments, whereas 2D MLLM, due to the lack of information from single-view images, fails to identify most cases.



Figure S10. Point-text Captions and QA Demos. We use the fine-tuned GPT4Point with OPT6.7B model to generate results on the test
set, demonstrating that our model performs well on dense captioning tasks and long (instruction) question answering. The results shows
our model’s capability to comprehend information such as object color and geometry.
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A 3D model of a palm tree.

3D model of the earth.

A 3D model of a red and black sword.

A 3D model of a white coffee cup.

A 3D model of a white ring.

A 3D model of a roll of toilet paper.

A 3D model of a brown bottle. 3D model of a white umbrella stand.

A 3D model of a floor lamp. 3D rendering of a white toilet with a white lid.

3D model of a small green pine tree, a Christmas tree. 3D model of a white chair.

Figure S11. Pyramid-XL Level 3 Point-E Finetune Results. We found that the results of fine-tuning with dense captions from our
Pyramid-XL significantly outperform those fine-tuned with Cap3D captions, demonstrating the greater accuracy of our generated captions.
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