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Figure 1. Overview of VBench. We propose VBench, a comprehensive benchmark suite for video generative models. We design a com-
prehensive and hierarchical Evaluation Dimension Suite to decompose “video generation quality” into multiple well-defined dimensions
to facilitate fine-grained and objective evaluation. For each dimension and each content category, we carefully design a Prompt Suite as
test cases, and sample Generated Videos from a set of video generation models. For each evaluation dimension, we specifically design
an Evaluation Method Suite, which uses a carefully crafted method or designated pipeline for automatic objective evaluation. We also
conduct Human Preference Annotation for the generated videos for each dimension and show that VBench evaluation results are well
aligned with human perceptions. VBench can provide valuable insights from multiple perspectives.

Abstract
Video generation has witnessed significant advance-

ments, yet evaluating these models remains a challenge. A
comprehensive evaluation benchmark for video generation
is indispensable for two reasons: 1) Existing metrics do
not fully align with human perceptions; 2) An ideal eval-
uation system should provide insights to inform future de-
velopments of video generation. To this end, we present
VBench, a comprehensive benchmark suite that dissects
“video generation quality” into specific, hierarchical, and
disentangled dimensions, each with tailored prompts and
evaluation methods. VBench has three appealing proper-
ties: 1) Comprehensive Dimensions: VBench comprises

∗equal contributions. Bcorresponding authors. Code is available

16 dimensions in video generation (e.g., subject identity in-
consistency, motion smoothness, temporal flickering, and
spatial relationship, etc.). The evaluation metrics with
fine-grained levels reveal individual models’ strengths and
weaknesses. 2) Human Alignment: We also provide a
dataset of human preference annotations to validate our
benchmarks’ alignment with human perception, for each
evaluation dimension respectively. 3) Valuable Insights:
We look into current models’ ability across various evalua-
tion dimensions, and various content types. We also investi-
gate the gaps between video and image generation models.
We will open-source VBench, including all prompts, eval-
uation methods, generated videos, and human preference
annotations, and also include more video generation mod-
els in VBench to drive forward the field of video generation.

1

ar
X

iv
:2

31
1.

17
98

2v
1 

 [
cs

.C
V

] 
 2

9 
N

ov
 2

02
3

https://vchitect.github.io/VBench-project/
https://github.com/Vchitect/VBench


Figure 2. VBench Evaluation Results of Video Generative
Models. We visualize the evaluation results of four video gen-
eration models in 16 VBench dimensions. We normalize the re-
sults per dimension for clearer comparisons. For comprehensive
numerical results, please refer to Table 1.

1. Introduction

Image generation models have made rapid progress in
the past few years, such as Variational Autoencoders
(VAEs) [59], Generative Adversarial Networks (GANs) [9,
25, 26, 30, 48, 52–55, 74], vector quantized (VQ) based ap-
proaches [22, 49, 97], and diffusion models [38, 89, 91].
This fuels recent explorations in video generation [8, 35,
41, 72, 88, 98, 104, 116, 124], which goes beyond static
imagery and models the dynamics and kinematics of real-
world scenes. With the growth of video generation models,
there arises a critical need for effective evaluation meth-
ods. The evaluation should be able to accurately reflect
human perception of generated videos, providing reliable
measures of a model’s performance. Additionally, it should
reflect each model’s specific strengths and weaknesses, of-
fering insights that inform the data, training, and architec-
tural choices of future video generation models.

However, existing metrics for video generation such
as Inception Score (IS) [87], Fréchet inception distance
(FID) [37], Fréchet Video Distance (FVD) [95, 96], and
CLIPSIM [83] are inconsistent with human judgement [20,
79]. Meanwhile, the Video Quality Assessment (VQA)
methods [63, 94, 108–114] are primarily designed for real
videos, thereby neglecting the unique challenges posed by
generative models, such as artifacts in synthesized videos.
Hence, there is a pressing need for an evaluation framework
that aligns closely with human perception, and specifically
designed for the characteristics of video generation models.

To this end, we introduce VBench, a comprehensive
benchmark suite for evaluating video generation model per-

formance. VBench has three appealing properties: 1) com-
prehensive evaluation dimensions, 2) human alignment, and
3) valuable insights.

First, our framework includes an evaluation dimension
suite that employs a hierarchical and disentangled approach
to the decomposition of “video generation quality”. This
suite systematically breaks down the evaluation into two
primary dimensions at a coarse level: Video Quality and
Video-Condition Consistency. Each of these dimensions
is further subdivided into more granular criteria. This hi-
erarchical separation ensures that each dimension isolates
and evaluates a single aspect of video quality, without in-
terference from other variables, as illustrated in Figure 1.
Recognizing video generation’s unique challenges, we have
tailored evaluation dimensions to its specific characteris-
tics. For example, in terms of Video Quality, maintaining
consistent subject identity (e.g., a teddy bear) in generated
videos is crucial, and is a problem rarely encountered in
real-world videos. Additionally, Video-Condition Consis-
tency is vital for conditional video generation tasks, requir-
ing its dedicated evaluation criteria. For each evaluation di-
mension, we carefully prepared around 100 text prompts as
test cases for text-to-video (T2V) generation, and devised
specialized evaluation methods tailored to each dimension.
In addition to multi-dimensional evaluations, we also assess
T2V models across diverse content categories. We orga-
nized prompt suites for eight distinct types, such as animal,
architecture, human, and scenery, allowing for a separate
evaluation within each category. This exploration reveals
variable competencies in T2V generation across different
content types, highlighting areas of proficiency and those
requiring further enhancement.

Second, we systematically demonstrate that our evalu-
ation method suite is closely aligned with human percep-
tion in every fine-grained evaluation dimension. We col-
lected human preference annotations for each dimension.
Specifically, we use various T2V models to sample videos
from our prompt suites. Then given two videos sampled
from the same prompt, we ask human annotators to indicate
preferences according to each VBench dimension respec-
tively. We show that VBench evaluations highly correlate
with human preferences. Additionally, the human prefer-
ence annotations can be utilized for multiple purposes, such
as fine-tuning generation or evaluation models to enhance
alignment with human perceptions. For instance, we utilize
the annotations to implement Instruction Tuning within a
Visual-Language Model (VLM), enhancing its T2V evalu-
ation alignment with human preferences.

Third, VBench’s multi-dimensional and multi-
categorical approach can provide valuable insights to
the video generation community. Our multi-dimensional
system enables detailed feedback on the strengths and
weaknesses of video generation models across various
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ability aspects. This approach not only ensures a compre-
hensive evaluation of existing models but also provides
valuable insights into the training of advanced video
generation models, guiding architectural and data choices
for improved video generation outcomes. Additionally,
VBench can be readily applied to evaluate image generation
models, and thus we investigate the disparities between
video and image generation models. In Section 5, we
discuss in detail on various observations and insights drawn
from VBench evaluations.

We are open-sourcing VBench, including its evaluation
dimension suite, evaluation method suite, prompt suite, gen-
erated videos, and the dataset of human preference annota-
tions. We also encourage more video generation models to
participate in the VBench challenge.

2. Related Works
Video Generative Models. Recently, diffusion mod-
els [19, 38, 89, 91] have achieved significant progress in
image synthesis [31, 46, 47, 78, 81, 84, 86], and enabled
a line of works towards video generation [8, 13, 28, 33–
35, 39, 40, 50, 58, 72, 88, 98, 104, 118, 124, 132, 133].
Many recent diffusion-based works [35, 72, 98, 104] are
text-to-video (T2V) models. Other guidance modalities are
also available, including image-to-video [14, 16, 23, 122],
video-to-video [12, 67, 80, 82, 121], and a variety of con-
trol maps [15, 51, 58, 73, 103, 125, 126] such as pose, depth,
and sketch. The boom of video generation models requires a
comprehensive evaluation system to inform their current ca-
pabilities and guide future developments, and VBench takes
the initiative in providing a comprehensive benchmark suite
for fine-grained and human-aligned evaluation.
Evaluation of Visual Generative Models. Existing video
generation models typically use metrics like Inception
Score (IS) [87], Fréchet inception distance (FID) [37],
Fréchet Video Distance (FVD) [95], and CLIPSIM [83] for
evaluation. The UCF-101 [92] dataset’s class labels of-
ten serve as text prompts for IS, FID, and FVD, whereas
MSR-VTT [120]’s human-labeled video captions are used
for CLIPSIM. Despite covering various real-world scenar-
ios, these prompts lack diversity and specificity, limiting ac-
curate and fine-grained evaluation of video generation. For
text-to-image (T2I) models, several benchmarks [6, 7, 44,
61, 86, 99] are proposed to assess various capabilities like
compositionality [44] and editing ability [7, 99]. However,
video generative models still lack comprehensive evaluation
benchmarks for detailed and human-aligned feedback. Our
work differs from concurrent research [70, 71] in three key
ways: 1) We have created 16 distinct evaluation dimensions,
each with specialized prompts for precise assessment; 2)
We have empirically validated that every dimension aligns
closely with human perception; 3) Our multi-dimensional
and multi-categorical evaluation offers valuable and com-

prehensive insights into video generation.

3. VBench Suite

In this section, we introduce the main components of
VBench. In Section 3.1, we present our rationale for de-
signing the 16 evaluation dimensions, as well as each di-
mension’s definition and evaluation method. We then elab-
orate on the prompt suites we use in Section 3.2. To vali-
date VBench’s alignment with human perception, we con-
duct human preference annotation for each dimension (see
Section 3.3). The experiments and the insights drawn from
VBench will be detailed in Section 4 and Section 5.

3.1. Evaluation Dimension Suite

We first introduce our evaluation dimensions and their cor-
responding evaluation methods.

Existing evaluation metrics like FVD [95] often con-
clude video generation model performance to a single num-
ber. This oversimplifies the evaluation and has several risks.
First, a single number can obscure an individual model’s
strengths and weaknesses, and it fails to provide insights
into specific areas where a model excels or underperforms.
This makes it challenging to derive insights for future ar-
chitectural and training designs based on single-valued met-
rics. Second, the notion of “high-quality video generation”
is complex and multifaceted, with individuals prioritizing
different video attributes based on the intended application.
For instance, some may prioritize the absence of tempo-
ral flickering, while others may consider fidelity to the text
prompt as the most significant, with less emphasis on flick-
ering. Therefore, in contrast with performing single-valued
evaluations of video generation quality, we propose a dis-
aggregated approach by decomposing the brand notion of
“video generation performance” into multiple discrete di-
mensions for fine-grained evaluation.

Specifically, we break “video generation quality” down
into 16 disentangled dimensions in a top-down manner,
with each evaluation dimension assessing one aspect of
video generation quality. On the top level, we evaluate
T2V performance from two broad perspectives: 1) Video
Quality — “Without considering alignment with the text
prompt, does the video alone look good?”, which focuses
on the perceptual quality of the synthesized video, and does
not consider the input condition (e.g., text prompt), and
2) Video-Condition Consistency — “Is the video consis-
tent with what the user wants to generate?”, which fo-
cuses on whether the synthesized video is consistent with
the guiding condition that the user provides (e.g., the text
prompt for T2V generation). Under both “Video Quality”
and “Video-Condition Consistency”, we further break the
coarse-grained dimensions into more fine-grained dimen-
sions, as shown in Figure 1.
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3.1.1 Video Quality

We split “Video Quality” into two disentangled aspects,
“Temporal Quality” and “Frame-Wise Quality”, where the
former only considers the cross-frame consistency and dy-
namics, and the latter only considers the quality of each
individual frame without taking temporal quality into con-
cern. For “Temporal Quality”, we further devise five dif-
ferent evaluation dimensions, where each focusing on a dif-
ferent aspect of temporal quality. We briefly introduce each
dimension here. Please refer to the Supplementary File for
the detailed definition and evaluation method of each di-
mension.

Temporal Quality - Subject Consistency. For a subject
(e.g., a person, a car, or a cat) in the video, we assess
whether its appearance remains consistent throughout the
whole video. To this end, we calculate the DINO [10] fea-
ture similarity across frames.

Temporal Quality - Background Consistency. We eval-
uate the temporal consistency of the background scenes by
calculating CLIP [83] feature similarity across frames.

Temporal Quality - Temporal Flickering. Generated
videos can exhibit imperfect temporal consistency at local
and high-frequency details. We take static frames and com-
pute the mean absolute difference across frames.

Temporal Quality - Motion Smoothness. Both Subject
Consistency and Background Consistency focus on tem-
poral consistency of the “look” instead of the smoothness
of “movement and motion”. We believe it is important
to evaluate whether the motion in the generated video is
smooth, and follows the physical law of the real world. We
utilize the motion priors in the video frame interpolation
model [66] to evaluate the smoothness of generated motions
(see the detailed method in Supplementary File).

Temporal Quality - Dynamic Degree. Since a completely
static video can score well in the aforementioned temporal
quality dimensions, it is important to also evaluate the de-
gree of dynamics (i.e., whether it contains large motions)
generated by each model. We use RAFT [93] to estimate
the degree of dynamics in synthesized videos.

Frame-Wise Quality - Aesthetic Quality. We evaluate the
artistic and beauty value perceived by humans towards each
video frame using the LAION aesthetic predictor [60]. It
can reflect aesthetic aspects such as the layout, the richness
and harmony of colors, the photo-realism, naturalness, and
artistic quality of the video frames.

Frame-Wise Quality - Imaging Quality. Imaging qual-
ity refers to the distortion (e.g., over-exposure, noise, blur)
presented in the generated frames, and we evaluate it us-
ing the MUSIQ [57] image quality predictor trained on the
SPAQ [24] dataset.

3.1.2 Video-Condition Consistency

We mainly dissect “Video-Condition Consistency” into
“Semantics” (i.e., the type of the entities and their at-
tributes) and “Style” (i.e., whether the generated video
is consistent with user-requested style), with each decom-
posed into more fine-grained dimensions.
Semantics - Object Class. We use GRiT [115] to detect
the success rate of generating the specific class of objects
depicted in the text prompt.
Semantics - Multiple Objects. Other than generating a sin-
gle object of a particular class, the ability to compose mul-
tiple objects from different classes in the same frame is also
an essential ability in video generation. We detect the suc-
cess rate of generating all the objects specified in the text
prompt within each video frame.
Semantics - Human Action. Human action is an impor-
tant aspect in human-centric video generation. We apply
UMT [65] to evaluate whether human subjects in gener-
ated videos can accurately execute the specific actions men-
tioned in the text prompts.
Semantics - Color. To evaluate whether synthesized object
colors align with the text prompt, we use GRiT [115] to
provide color captioning, and compare against the expected
color.
Semantics - Spatial Relationship. Other than classes and
attributes of synthesized objects, we also evaluate whether
their spatial relationship follows what is specified by the
text prompt. We focus on four primary types of spatial rela-
tionships, and perform rule-based evaluation similar to [44].
Semantics - Scene. We need to evaluate whether the syn-
thesized video is consistent with the intended scene de-
scribed by the text prompt. For example, when prompted
“ocean”, the generated video should be “ocean” instead of
“river”. We use Tag2Text [45] to caption the generated
scenes, and then check its correspondence with scene de-
scriptions in the text prompt.
Style - Appearance Style. Apart from semantics con-
sistency with the text prompt, another important pillar in
video-condition consistency is style. There are many styles
that alter the look, color, and texture of synthesized video
frames, such as “oil painting style”, “black and white style”,
“watercolor painting style”, cyberpunk style”, “black and
white” etc. We calculate the CLIP [83] feature similarity
between synthesized frames and these style descriptions.
Style - Temporal Style. Apart from appearance styles,
videos also have temporal styles like various camera mo-
tions. We use ViCLIP [105] to calculate the video feature
and the temporal style description feature similarity to re-
flect temporal style consistency.
Overall Consistency. We further use overall video-text
consistency computed by ViCLIP [105] on general text
prompts as an aiding metric to reflect both semantics and
style consistency.
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Figure 3. Prompt Suite Statistics. The two graphs provide an overview of our prompt
suites. Left: the word cloud to visualize word distribution of our prompt suites. Right: the
number of prompts across different evaluation dimensions and different content categories.

【Prompt】The bund Shanghai, Van Gogh style｜【Question】Is the style of the video in the Van Gogh style?

clear annotations

A is better

B is better

Same quality

Compare

mark as invalid
shortcuts

search tags

playback speed

Figure 4. Interface for Human Prefer-
ence Annotation. Top: prompt and question.
Right: choices that annotators can make. Bot-
tom left: control for stop and playback.

For each dimension, please refer to the Supplementary
File for: 1) details of its definition, 2) positive and nega-
tive examples (i.e., synthesized videos) of each dimension,
and 3) detailed evaluation method and pipeline implemen-
tations.

3.2. Prompt Suite

The sampling procedure of current diffusion-based video
generation models [35, 98, 104] is time-consuming (e.g., 90
seconds per video for LaVie [104], and more than 2 minutes
per video for CogVideo [41]). Therefore, we need to control
the amount of test cases for efficient evaluation. Meanwhile,
we need to maintain the diversity and comprehensiveness of
our prompt suite, so we design compact yet representative
prompts in terms of both the evaluation dimensions and the
content categories. We visualize our prompt suite distribu-
tions in Figure 3.
Prompt Suite per Dimension. For each VBench evalua-
tion dimension, we carefully designed a set of around 100
prompts as the test cases. The prompt suite is carefully cu-
rated to test the specific ability corresponding to the dimen-
sion tested. For example, for the “Subject Consistency” di-
mension which aims to evaluate the consistency of subjects’
appearances throughout the video, we ensure every prompt
has a movable subject (e.g., animals or vehicles) performing
non-static actions, where their consistency might be com-
promised due to inconsistency introduced by their move-
ments or changing locations. For the dimension “Object
Class”, we ensure the existence of a specific class of object
in every prompt. For “Human Action”, each test prompt
contains a human subject performing a well-defined action
from the Kinetics-400 dataset [56], where 100 representa-
tive actions are selected with minimal semantic overlaps
among themselves. Please refer to the Supplementary File
for the design rationale of the prompt suite for each of the
16 dimensions.
Prompt Suite per Category. When designing prompts for
each dimension, the focus was to showcase models’ ability
in that specific dimension. We further incorporate prompt
suites for eight content categories to provide insights into

the performance across varied content types. To this end,
we prepare a collection of human-curated prompts from the
Internet and divide them into 8 distinctive categories fol-
lowing YouTube’s categorization. Subsequently, we feed
both the category labels and prompts into a Large Lan-
guage Model (LLM) [130] (see more implementation de-
tails in Supplementary File), obtaining multi-label outputs
for each caption. We select 800 prompts and manually clean
their labels to serve as per-category prompt suites. Finally,
we obtain 100 prompts for each of these eight categories:
Animal, Architecture, Food, Human, Lifestyle,
Plant, Scenery, and Vehicles.

3.3. Human Preference Annotation

We perform human preference labeling on massive gener-
ated videos. The primary goal is to validate VBench evalu-
ation’s alignment with human perception in each of the 16
evaluation dimensions, and the verification results will be
detailed in Section 4.2. We also show that our human pref-
erence annotations can be useful in future tasks of finetun-
ing generation and evaluation models to enhance alignment
with human perceptions.
Data Preparation. Given a text prompt pi, and four
video generation models to be evaluated {A,B,C,D}, we
use each model to generate a video, forming a “group”
of videos Gi,j = {Vi,A,j , Vi,B,j , Vi,C,j , Vi,D,j}. For
each prompt pi, we sample five such groups of videos
{Gi,0, Gi,1, Gi,2, Gi,3, Gi,4}. For each group, we pair
the videos up in pair-wise combinations, yielding six
pairs: (VA, VB), (VA, VC), (VA, VD), (VB , VC), (VB , VD),
(VC , VD), and ask human annotators to indicate their pre-
ferred video for each pair. Within the VBench evaluation
framework, a prompt suite of N prompts produces N×5×6
pairwise video comparisons. The video order within each
pair is randomized to ensure unbiased annotation.
Human Labeling Rules. Specifically, the human annota-
tors are asked to only consider the specific evaluation di-
mension of interest and select the preferred video. For ex-
ample, in Figure 4, for the Appearance Style dimension,
the question is “Is the style of the video in the Van Gogh
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Table 1. VBench Evaluation Results per Dimension. This table compares the performance of four video generation models across
each of the 16 VBench dimensions. A higher score indicates relatively better performance for a particular dimension. We also provide two
specially built baselines, i.e., Empirical Min and Max (the approximated achievable min and max scores for each dimension), as references.

Models Consistency
Subject

Consistency
Background

Flickering
Temporal

Smoothness
Motion

Degree
Dynamic

Quality
Aesthetic

Quality
Imaging

Class
Object

LaVie [104] 91.41% 97.47% 98.30% 96.38% 49.72% 54.94% 61.90% 91.82%
ModelScope [72, 98] 89.87% 95.29% 98.28% 95.79% 66.39% 52.06% 58.57% 82.25%

VideoCrafter [35] 86.24% 92.88% 97.60% 91.79% 89.72% 44.41% 57.22% 87.34%
CogVideo [41] 92.19% 95.42% 97.64% 96.47% 42.22% 38.18% 41.03% 73.40%
Empirical Min 14.62% 26.15% 62.93% 70.60% 0.00% 0.00% 0.00% 0.00%
Empirical Max 100.00% 100.00% 100.00% 99.75% 100.00% 100.00% 100.00% 100.00%

Models Objects
Multiple

Action
Human Color Relationship

Spatial Scene Style
Appearance

Style
Temporal

Consistency
Overall

LaVie [104] 33.32% 96.80% 86.39% 34.09% 52.69% 23.56% 25.93% 26.41%
ModelScope [72, 98] 38.98% 92.40% 81.72% 33.68% 39.26% 23.39% 25.37% 25.67%

VideoCrafter [35] 25.93% 93.00% 78.84% 36.74% 43.36% 21.57% 25.42% 25.21%
CogVideo [41] 18.11% 78.20% 79.57% 18.24% 28.24% 22.01% 7.80% 7.70%
Empirical Min 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00%
Empirical Max 100.00% 100.00% 100.00% 100.00% 82.22% 28.55% 36.40% 36.40%

style?”, and human annotators are instructed to only focus
on whether the generated video’s style belongs to the Van
Gogh style and should not consider other quality aspects
of the generated video, such as potential issues like the de-
gree of temporal flickering. In the example in this figure,
video A resembles the Van Gogh better than video B, and
the annotator is expected to select “A is better”. For every
dimension, we carefully prepare instructions and train the
human annotators to understand the definition of the dimen-
sion, and perform multiple quality assurance protocols via
a pre-labeling trial, and two rounds of post-labeling checks
(see more details in the Supplementary File).
Annotations for VLM Tuning. We map VBench evalu-
ation scores from various dimensions to the scale of 0-10
and combine them with human preference annotations to
form the instruction data, which is then used to fine-tune
the pre-trained VideoChat [64] model to demonstrate im-
proved evaluation capabilities. For implementation details
and tuning results, please refer to the Supplementary File.

4. Experiments

We adopt the video generation models LaVie [104], Mod-
elScope [72, 98], VideoCrafter [35], and CogVideo [41] for
VBench evaluation, and more will be added as they become
open-sourced. Details of the models and sampling proce-
dures are in the Supplementary File.

4.1. Per-Dimension Evaluation
For every dimension, we calculate the VBench scores using
the evaluation method suite described in Section 3.1, and
show the results using Figure 2 and Table 1. We additionally
designed three reference baselines, namely Empirical Max,
Empirical Min, and WebVid-Avg. The first two approximate
the maximum / minimum scores that videos might be able
to achieve, and WebVid-Avg reflects the WebVid-10M [5]
dataset quality in each VBench dimension.

Empirical Max. For most dimensions, to approximate
the maximum achievable values, we first retrieve WebVid-
10M [5] videos according to our prompt suites. We use
CLIP [83] to extract text features of both WebVid-10M’s
captions and our prompts. For each prompt, we retrieve the
top-5 WebVid-10M videos according to text feature sim-
ilarity with the given prompt. Given that the generated
videos are usually 2 seconds in length, we randomly select
a 2-second segment from each retrieved video and sample
frames at 8 frames per second (FPS). For each dimension,
we use the retrieved videos according to its prompt suite and
report the highest-scoring video’s result as Empirical Max.
Empirical Min. To approximate the minimum achiev-
able values, we use randomly generated 2-second Gaus-
sian noise clips to calculate results for the “Video-Condition
Consistency” dimensions. For most “Video Quality” di-
mensions, we select frames from real videos and design
frame concatenation for each dimension, approximating the
minimum score achievable for each VBench dimension.
WebVid-Avg. Similar to Empirical Max, we compute
the average for each dimension on retrieved WebVid-
10M [5] videos. This baseline could reflect the average per-
dimension quality of the commonly used video generation
training dataset WebVid-10M, and provide a reference for
model performances. The comparison against WebVid-Avg
and Empirical Max is visualized in Figure 6 (b).

4.2. Validating Human Alignment of VBench
To validate that our evaluation method can faithfully reflect
human perception, we performed a large-scale human an-
notation for each dimension, as mentioned in Section 3.3.
We show the correlation between VBench evaluation results
and human preference annotations in Figure 5.
Win Ratio. Given the human labels, we calculate the win
ratio of each model. During pairwise comparisons, if a
model’s video is selected as better, then the model scores
1 and the other model scores 0. If there is a tie, then both
models score 0.5. For each model, the win ratio is calcu-
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Figure 5. Validate VBench’s Human Alignment. Our experiments show that VBench evaluations across all dimensions closely match
human perceptions. Each plot shows the alignment verification result of a specific VBench dimension. In each plot, a dot represents the
human preference win ratio (horizontal axis) and VBench evaluation win ratio (vertical axis) for a particular video generation model. We
linearly fit a straight line to visualize the correlation, and calculate the Spearman’s correlation coefficient (ρ) for each dimension.

(a) T2V vs. T2I (b) T2V vs. WebVid-Avg & Max
Figure 6. More Comparisons of Video Generation Models with
Other Models and Baselines. We use VBench to evaluate other
models and baselines for further comparative analysis of T2V
models. (a) Comparison with text-to-image (T2I) generation mod-
els. (b) Comparison with WebVid-Avg and Empirical Max base-
lines. See the Supplementary File for comprehensive numerical
results and details on normalization methods.

lated as the total score divided by the total number of pairs-
wise comparisons participated.
Per-Dimension Evaluation. For each evaluation dimen-
sion, we calculate the model win ratio based on (1) VBench
evaluation results, and (2) human annotation results, respec-
tively, and compute their correlations, as shown in Figure 5.
We observe that VBench’s per-dimension evaluation results
are highly correlated with human preference annotations.

4.3. Per-Category Evaluation

We evaluate the T2V models across eight different con-
tent categories, by generating videos based on Prompt Suite
per Category described in Section 3.2, and then calculating
their performance across different evaluation dimensions.
Figure 7 visualizes the evaluation results of each model in
terms of the eight content categories.

4.4. Video Generation V.S. Image Generation
We conduct a comparative analysis of the frame-wise gen-
eration capability exhibited by text-to-video (T2V) mod-
els and text-to-image (T2I) models with two primary ob-

jectives: first, to assess the extent to which T2V models
have successfully inherited the frame-wise generative ca-
pability of the T2I models; and second, to investigate the
frame-wise generation capability gap between existing T2I
and T2V models. As an initial exploration into this prob-
lem, we compare video generation models with three image
generation models, namely Stable Diffusion (SD) 1.4 [84],
SD2.1 [84], and SDXL [81]. We choose 10 VBench dimen-
sions that can encompass frame-wise generation capabili-
ties, and sample frames from all the image and video gen-
eration models according to Prompt Suite per Evaluation
Dimension described in Section 3.2. Figure 6 (a) visualizes
the evaluation results of T2V versus T2I models.

5. Insights and Discussions

In this section, we discuss the observations and insights we
draw from our comprehensive evaluation experiments.
· Trade-off across Ability Dimensions. We have noticed
a trade-off in video generation models between 1) temporal
consistency (Subject Consistency, Background Consistency,
Temporal Flickering, Motion Smoothness) and 2) Dynamic
Degree. Models strong in temporal consistency often have
a lower Dynamic Degree, as these two aspects are some-
what complementary (see Figure 2 and Table 1). For exam-
ple, LaVie excels in Background Consistency and Tempo-
ral Flickering but has a low Dynamic Degree, probably be-
cause generating relatively static scenes can “cheat” to get
high temporal consistency scores. Conversely, VideoCrafter
shows a high Dynamic Degree but suffers from poor perfor-
mance in all temporal consistency dimensions. This trend
highlights the current challenge for models to achieve tem-
poral consistency with dynamic content of large motions.
Future research should focus on enhancing both aspects si-
multaneously, as improving only one might indicate com-
promising the other.
· Uncovering Hidden Potential of T2V Models in Spe-
cific Content Categories. Our analysis reveals that the
capabilities of some models vary significantly across dif-
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Figure 7. VBench Results across Eight Content Categories (best viewed in color). For each chart, we plot the VBench evaluation results
across eight different content categories, benchmarked by our Prompt Suite per Category. The results are linearly normalized between 0
and 1 for better visibility across categories. See the Supplementary File for comprehensive numerical results, and normalization details.

ferent content types. For instance, for Aesthetic Quality,
CogVideo scores well for Food (see Figure 7 rightmost
chart), whereas it underperforms in others like Animal and
Vehicles. The average results across various prompts
might suggest a lower overall “Aesthetic Quality” (as seen
in Figure 2), but CogVideo demonstrates relatively strong
aesthetics in at least the Food category. This suggests that
with tailored training data and strategies, CogVideo could
potentially match other models in aesthetics by improving
such ability in other content types. Therefore, we recom-
mend evaluating video generation models not just based on
ability dimensions but also considering specific content cat-
egories to uncover their hidden potential.
· Bottleneck in Temporally Complex Categories Af-
fecting Spatial and Temporal Performance. For spa-
tially complex categories (e.g., Animal, LifeStyle,
Human, Vehicles), models all perform relatively poorly
mainly in Aesthetic Quality (shown in Figure 7). This is
likely due to the challenges in synthesizing harmonious
color schemes, articulated structures, and appealing layouts
amidst complex elements. On the other hand, for cate-
gories involving complex and intense motions like Human
and Vehicle (see their Dynamic Degree in Supplemen-
tary File), performance is relatively poor across all dimen-
sions. This suggests that motion complexity and dynamic
intensity significantly hinder synthesis, impacting both spa-
tial and temporal dimensions, probably because poor tem-
poral modeling results in distorted and blurred imagery.
This highlights the need for improved handling of dynamic
motions in video generation models.
· Challenges of Data Quantity in Handling Complex
Categories like Human. The WebVid-10M dataset [5] al-
locates 26% of its content to the Human category, which
is the largest share among the eight categories (see statis-
tics in Supplementary File). However, the Human category
exhibits one of the poorest results among eight categories
(see Figure 7). This suggests that merely increasing data
volume may not significantly enhance performance in com-
plex categories like Human. A potential approach could in-
volve integrating human-related priors or controls, such as

skeletons, to better capture the articulated nature of human
appearances and movements.
· Prioritizing Data Quality Over Quantity in Large-
Scale Datasets. For Aesthetic Quality, Figure 7 shows that
the Food category almost always tends to have the high-
est scores among all categories. This is corroborated by
the WebVid-10M dataset [5], where Food ranks highest
in Aesthetic Quality according to VBench evaluation (refer
to Supplementary File for more details), despite compris-
ing just 11% of the total data. This observation suggests
that at million scales, data quality might hold greater im-
portance than quantity. Furthermore, VBench’s evaluation
dimensions can be potentially useful for cleaning datasets
in specified quality dimensions.
· Compositionality: T2I versus T2V. As shown in Figure 6
(a), T2V models significantly underperform in Multiple Ob-
jects and Spatial Relationship compared to T2I models (es-
pecially SDXL [81]), which highlights the need to enhance
compositionality (i.e., correctly composing multiple objects
in the same frame). We believe possible solutions might
be: 1) curating training data incorporating multiple objects
with corresponding captions explicitly depicting this com-
positionality, or 2) adding intermediate spatial control mod-
ules or modalities during video synthesis. Furthermore, the
disparity of the text encoders might also account for the per-
formance gap. As T2I models leverage bigger (OpenCLIP
ViT-H for SD2.1 [84]) or more sophisticated (CLIP ViT-L &
OpenCLIP ViT-G for SDXL [81]) text encoders compared
with T2V models (e.g., CLIP ViT-L alone for LaVie), more
representative text embeddings could be featuring more ac-
curate object composition comprehension.

6. Conclusion

With the growing focus on video generation, comprehen-
sive evaluation of these models is essential to assess cur-
rent advancements and guide future research. In this work,
we take the first step forward and propose VBench, a com-
prehensive benchmark suite for evaluating video genera-
tion models. With its multi-dimensional, human-aligned,
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and insight-rich properties, VBench could play vital roles
for evaluating future video generation models and inspiring
further advancements in video generation. We believe that
VBench is a significant contribution to the video generation
and evaluation community.
Limitations and Future Work. We plan to expand
VBench to include more models when they become avail-
able and extend the evaluations to additional video genera-
tion tasks, like image-to-video.
Potential Negative Societal Impacts. We also recognize
the importance of considering ethical aspects in future iter-
ations of VBench. While VBench currently does not assess
safety and equality dimensions, we urge users to exercise
caution with open-sourced video generation models.
Acknowledgement. We would like to thank Shangchen
Zhou, Jianyi Wang, and Ruicheng Feng for their helpful
suggestions.
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VBench: Comprehensive Benchmark Suite for Video Generative Models

Supplementary Material

In this supplementary file, we provide more details on
Evaluation Dimension Suite and Evaluation Method Suite
in Section G, and elaborate on Prompt Suite details in Sec-
tion H. We then provide further explanations on Human
Preference Annotations in Section I, and more implemen-
tation details on our experiments and visualizations in Sec-
tion J. The potential societal impacts of our work are dis-
cussed in Section K. We also discuss our limitations in Sec-
tion L. Finally, in Section M, we provide additional exper-
imental results used to support the visualizations and in-
sights in the main paper.

A demo video is also provided along with this supple-
mentary file to illustrate VBench and show video examples
of each dimension.

G. More Details on Evaluation Dimension and
Method Suite

G.1. Video Quality

(a) consistent subject appearance (score 96.81%) 

(b) inconsistent subject appearance (score 83.25%) 

Figure A8. Visualization of Subject Consistency. We demon-
strate different degrees of subject consistency, as indicated by our
Subject Consistency score (the larger the better) (a) The cow has a
relatively consistent look throughout across different frames. (b)
The cow shows inconsistency in its appearance over time. The red
boxes indicate areas of subject inconsistency.

Subject Consistency. When there is a subject (e.g., a cow,
a person, a car, or a cat) in the video, it is important that the
subject looks consistent throughout the video (i.e., whether
it is still the same thing or the same person). For exam-
ple, in Figure A8, the cow in the top row remains consistent
across different frames, while the cow in the bottom row
shows changes in appearance between frames. To evaluate
subject consistency, we employ DINO [10] to extract fea-
tures from each frame to represent the subject. Since DINO
is not trained to disregard the differences within subjects
of the same class [85], its feature extraction is particularly
sensitive to the identity variations of the subject within the

video, thereby making it a suitable tool for evaluating sub-
ject consistency. Specifically, for each video, the subject
consistency score is calculated as:

Ssubject =
1

T − 1

T∑
t=2

1

2
(⟨d1 · dt⟩+ ⟨dt−1 · dt⟩), (1)

where di is the DINO image feature of the ith frame, nor-
malized to unit length, and ⟨·⟩ is the dot product operation
for calculating cosine similarity. For each frame, we cal-
culate the cosine similarity with the first frame and its pre-
ceding frame, take the average, and then compute the mean
over all the non-starting video frames. We average the score
Ssubject for all the videos generated by one model as the fi-
nal score of the model.

(a) consistent background scene (score 93.39%) 

(b) inconsistent background scene (score 88.08%) 

Figure A9. Visualization of Background Consistency. We show-
case varying levels of background consistency, as indicated by our
Background Consistency metrics (larger values denote better con-
sistency) (a) The background scene maintains a high degree of
consistency (i.e., still the same scene) across different frames. (b)
The background exhibits noticeable distortion and abrupt changes
over time.

Background Consistency. Beyond the focus on the fore-
ground subject, maintaining a consistent background scene
across different frames is equally important. For example,
in Figure A9, in the top row, the scene maintains a consis-
tent appearance as the camera moves, while in the bottom
row, the entire scene undergoes significant changes within a
few frames. For each video frame, we employ the CLIP [83]
image encoder to extract its feature vector. We then com-
pute the background consistency metric, which is similar to
the method used for Subject Consistency:

Sbackground =
1

T − 1

T∑
t=2

1

2
(⟨c1 · ct⟩+ ⟨ct−1 · ct⟩), (2)

where ci represents the CLIP image feature of the ith frame,
normalized to unit length.
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different frames

(a) mild flickering (score 99.68%) (b) serious flickering (score 96.01%) 
different frames

Figure A10. Visualization of Temporal Flickering. We demon-
strate different degrees of temporal flickering, with a mild occur-
rence in (a), and a severe occurrence in (b), both reflected by our
flicker score metrics (the larger the better). To visualize temporal
flickering, given a generated video (top row), we extract a small
segment of pixels (marked as the red segment) from each frame at
the same location and stack them in frame order (bottom row). (a)
Pixel values do not vary abruptly, and the video suffers less from
flickering. (b) Pixel values vary abruptly and frequently across dif-
ferent frames, showing strong temporal flickering. Our evaluation
metrics also give a lower score.

Table A2. Dynamic Degree on Three Benchmarks. We report
the Dynamic Degree metrics on three Temporal Flickering bench-
marks. We use videos from the Subject Consistency dimension as
the “Dynamic Benchmark”, videos from the Background Consis-
tency dimension as the “Semi-Dynamic Benchmark”, and videos
from the temporal flickering dimension as the “Static Benchmark”.

Models Benchmark
Static

Benchmark
Semi-Dynamic

Benchmark
Dynamic

LaVie [104] 0.00% 6.51% 49.72%
ModelScope [72, 98] 0.00% 33.72% 66.39%

VideoCrafter [35] 0.00% 51.63% 89.72%
CogVideo [41] 0.00% 14.19% 42.22%

Temporal Flickering. For real videos, temporal flickering
is usually a result of frequent lighting variation, or shaky
camera motions during the video capture process. How-
ever, for generated videos, temporal flickering is an intrinsic
property of the video generation model, usually caused by
imperfect temporal consistency at local and high-frequency
details. In generated videos, temporal inconsistency can
be attributed to various types of issues, including temporal
flickering, unnatural motions, subject inconsistency etc. To
disentangle the evaluation of temporal flickering from other
aspects, we use static video scenes (i.e., no apparent mo-
tions) as the test cases (We use carefully designed prompts
to generate static scenes for video sampling. To further en-
sure that the evaluation is conducted on static videos with-
out apparent motions, we employ an optical flow estima-
tor [93] to filter out videos and only keep the static videos).
We calculate the frame-by-frame temporal flickering degree
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Figure A11. Temporal Flickering Human Preference across
Different Dynamic Degrees. In each plot, a dot represents the hu-
man preference win ratio, where the horizontal and vertical axes
correspond to two different benchmarks with different dynamic
degrees. We linearly fit a straight line to visualize the correlation
and calculate the correlation (ρ) for each dimension. We observe
that the human preferences in terms of temporal flickering on these
three benchmarks have high mutual correlations of around 99%.

with the following formula:

Sflicker =
1

N

N∑
i=1

(
1

T − 1

T−1∑
t=1

MAE (f t
i , f

t+1
i )), (3)

where N is the number of videos generated by a model, T is
the number of frames per video, f t

i is the frame t in video i,
and MAE is the Mean Absolute Error between two consec-
utive frames over all pixel locations. We then normalize the
temporal flickering degree to [0, 1] as follows:

Sflicker−norm =
255− Sflicker

255
, (4)

where a higher score implies less flickering, and thus better
video perceptual quality in terms of temporal flickering.

To verify that the strength of motions (i.e., large motion
or small motion) in videos does not significantly impact the
model’s ranking in terms of temporal flickering, we conduct
separate human evaluations for the level of temporal flicker-
ing on videos with different dynamic degrees, and show in
Figure A11 that model ranking in terms of temporal flick-
ering does not vary based on the dynamic degree of test
videos. For videos of high dynamic degrees, we use videos
from the Subject Consistency dimension’s prompt suite, and
term as the “Dynamic Benchmark”. For videos that ex-
hibit lower dynamic degrees but remain non-static, we use
videos sampled from the Background Consistency dimen-
sion’s prompt suite, and label them as the “Semi-Dynamic
Benchmark”. Additionally, the “Static Benchmark” refers
to the videos sampled from the prompt suite for the Tem-
poral Flickering dimension. We show the dynamic degree
of videos in these three benchmarks in Table A2. In Fig-
ure A11, we show that the human win ratio in terms of tem-
poral flickering on three benchmarks is almost perfectly cor-
related with each other, with a correlation of around 99%
between any two benchmarks. Therefore, we believe the
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degree of motion is disentangled with the temporal flick-
ering ranking in video generative models, and we use the
“Static Benchmark” for easier and more focused evaluation
on Temporal Flickering.

(a) smooth motion (score 96.04%) 

(b) unnatural motion (score 88.47%) 

Figure A12. Visualization of Motion Smoothness. We investigate
various levels of motion smoothness, ranging from being smooth
as depicted in (a) to highly erratic as depicted in (b), as indicated
by our motion score metrics (larger values denote better smooth-
ness). The red boxes indicate areas of discontinuous motion.

Motion Smoothness. To evaluate whether the motion in
the generated video is smooth and follows the physical law
of the real world, we make use of the frame-by-frame mo-
tion prior to video frame interpolation models. Specifi-
cally, video frame interpolation models usually assume real-
world motions within a very short time period (i.e., a few
consecutive frames) to be linear or quadratic and synthe-
size the non-existing intermediate frames based on this as-
sumption. Given a generated video consisting of frames
[f0, f1, f2, f3, f4..., f2n−2, f2n−1, f2n], we manually drop
the odd-number frames to obtain a lower-frame-rate video
[f0, f2, f4..., f2n−2, f2n], and use video frame interpola-
tion [66] to infer the dropped frames [f̂1, f̂3, ..., f̂2n−1]. We
then compute the Mean Absolute Error (MAE) between the
reconstructed frames and the original dropped frames. The
calculated MAE is normalized in the same way as Equa-
tion 4, so that the final score falls into [0, 1], with a larger
number implying smoother motion.
Dynamic Degree. Based on our observations, some mod-
els tend to generate static videos even when the prompt
includes descriptions of movement. This results in a no-
ticeable advantage for these models in evaluations of other
temporal consistency dimensions, leading to unfair compar-
isons. This dimension is designed to assess the extent to
which models tend to generate non-static videos. We use
RAFT [93] to estimate optical flow strengths between con-
secutive frames of a generated video. We then take the aver-
age of the largest 5% optical flows (considering the move-
ment of small objects in the video) as the basis to deter-
mine whether the video is static. The final dynamic de-
gree score is calculated by measuring the proportion of non-
static videos generated by the model.
Aesthetic Quality. Aesthetic Quality takes photographic

(a) recognized as not still, score = 1 

(b) recognized as still, score = 0 

Prompt: a motorcycle turning a corner 

Figure A13. Visualization of Dynamic Degree. We present gen-
erated examples of different degrees of motion. (a) In the video,
there is obvious motion of the camera and the object, which is
identified as dynamic. (b) The video remains almost unchanged
from the start to the end and is identified as static.

Prompt: A tropical beach at sunrise, with palm trees and crystal-clear water in the foreground 

(a) Aesthetic Score 46.33% 

(b) Aesthetic Score 69.70% 

(c) Aesthetic Score 81.69%

(d) SD-XL Samples
Aesthetic Score 86.65% Aesthetic Score 80.42% Aesthetic Score 82.87% Aesthetic Score 83.95%

Figure A14. Visualization of Aesthetic Quality. We demonstrate
video frames with varying degrees of aesthetic quality in (a), (b),
and (c), which are effectively reflected by our aesthetic score met-
rics (higher indicating better). In (d), we showcase images with
high aesthetic scores sampled from SDXL [81].

layout rules, the richness and harmonies of colors, the artis-
tic quality of the subjects, etc into account. We adopt an
image aesthetic quality predictor to evaluate the generated
videos frame by frame. We use the LAION aesthetic pre-
dictor [60] to give a 0-10 rating for each frame, linearly
normalize the score to 0-1, and calculate the average score
of all synthetic frames as the final video aesthetic score.
Imaging Quality. Imaging quality mainly considers the
low-level distortions presented in the generated video
frames (e.g., over-exposure, noise, blur). We use the
MUSIQ [57] image quality predictor trained on the
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SPAQ [24] dataset, which is capable of handling variable-
sized aspect ratios and resolutions. The frame-wise score is
linearly normalized to [0, 1] by dividing 100, and the final
score is then calculated by averaging the frame-wise scores
across the entire video sequence.

(a) high imaging quality (score 70.62%) 

(b) low imaging quality (score 31.27%) 

Figure A15. Visualization of Imaging Quality. We present ex-
amples of generated videos with high imaging quality scores in
(a), and low imaging quality scores (where the video is blurry and
over-exposed) in (b).

G.2. Video-Condition Consistency

(a) target object detected, score = 1 

(b) target object not detected, score = 0 

Prompt: a person 

Figure A16. Visualization of Object Class. We demonstrate gen-
eration examples for the target object at varying degrees, as re-
flected by the object score metrics (where 1 represents success,
and 0 represents failure). (a) The target object “person” is suc-
cessfully generated in the video. (b) The synthesized video does
not contain the target object.

Object Class. When a user specifies a certain type of object
in the text prompt, we aim to evaluate whether the model
can generate an object of the specified type. To this end, we
use GRiT [115] to detect objects in each frame of the gen-
erated video and check whether the specified object class
is successfully detected in these frames. Subsequently, we
report the proportion of frames in which the correspond-
ing object class has been successfully detected. We employ
GRiT for this dimension, as well as several other semantics
dimensions such as Multiple Objects, Color, and Spatial Re-
lationship for two reasons: 1) GRiT is a versatile framework
that can handle both detection and captioning tasks, pre-
dicting diverse object attributes, so that the VBench can use
the same framework across different dimensions and save

users from installing multiple frameworks or downloading
multiple pre-trained models. 2) GRiT demonstrates reliable
performance in evaluating our designated dimensions, with
comparable performance with the state-of-the-art object de-
tectors [115], and good alignment with human perception
in terms of “correct detection” as validated by the human
preference results in main paper Figure 5.

(a) objects dog and horse detected simultaneously, score = 1 

(b) objects dog and horse not detected simultaneously, score = 0 

Prompt: a dog and a horse 

Figure A17. Visualization of Multiple Objects. We showcase
instances of generating multiple objects within a video simultane-
ously at different levels, as indicated by our multiple objects score
metrics (where 1 signifies success, and 0 denotes failure). (a) The
video effectively generates multiple required objects (i.e., dog and
horse). (b) The video fails to produce the dog and horse at the
same time.

Multiple Objects. Other than generating a single object,
compositionality is also an essential aspect of video gen-
eration. Suppose the user requires generating multiple ob-
jects, we use GRiT for frame-wise object detection. For
each frame, we check whether all the user-requested ob-
jects simultaneously appear in each frame. We then report
the proportion of frames in which all the required objects
have been successfully detected.

(a) barbequing action detected, score = 1 

(b) barbequing action not detected, score = 0 

Prompt: a person is barbequing 

Figure A18. Visualization of Human Action. We showcase ex-
amples of generating the target action at different levels, as indi-
cated by our action score metrics (where 1 denotes success, and 0
denotes failure). (a) The video successfully generates the barbe-
quing action. (b) The video does not generate the target action.

Human Action. In the process of video synthesis from
textual prompts, both the mentioned subjects in the prompt
and the corresponding actions they engage in are important.
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Given the remarkable emergence of high-quality human-
centric generated videos, we believe it is necessary to ensure
that human subjects depicted in videos accurately execute
the specific actions described by the textual prompts. To
this end, we use the Kinetics-400 dataset [56] as a reference
due to its comprehensive characterization of diverse human
actions. To evaluate the accuracy of the generated videos,
we uniformly sample 16 frames from each video and apply
UMT [65], which achieves the state-of-the-art classifica-
tion performance on the Kinetics-400 dataset among open-
sourced models to classify the action. The top 5 results
with logits bigger than 0.85 are preserved as ground-truth
candidates, and we check whether the actions mentioned in
the text prompt appear in the ground-truth candidates. The
average percentage of all classification results is reported
to assess whether the generated videos have human actions
aligned with the text prompts.

(a) consistent with prompt (score 100.00%) 

(b) part inconsistent with prompt (score 76.92%) 

Prompt: a pink chair 

Figure A19. Visualization of Color. We present examples of gen-
erating the target color within videos, depicting various levels of
success through our color score metrics (larger denotes better). (a)
The video accurately generates the target color. (b) The video only
generated the target color in certain parts.

Color. To evaluate whether the color of an object is con-
sistent with the specified condition, we use GRiT’s caption-
ing ability to describe colors, with slight modification to the
GRiT pipeline. To remove the influence of the Object Class
dimension’s ability, we only consider videos where the ob-
ject has been successfully generated. Specifically, GRiT
identifies the bounding boxes of objects, which are then fed
to two text decoders: one for predicting categories and the
other for generating dense captions on the synthesized video
frame. We then verify if the corresponding object’s color
is successfully captioned in all frames. Among the frames
where the corresponding object is generated and the cap-
tion contains color information, we compute the percentage
of frames where the color required by the text prompt is
successfully captioned.
Spatial Relationship. We focus on left-right and top-
bottom relationships and evaluate whether the video con-
tent adheres to the spatial relationship specified by the text
prompts. Inspired by the T2I-CompBench [44] evaluation,
we compute the spatial relationship accuracy based on the

(a) correct objects and relationship (score 100.00%) 

(b) incorrect relationship (score 0.00%) 

Prompt: a clock on the left of a vase, front view

Figure A20. Visualization of Spatial Relationship. We show
examples of generating the spatial relationships mentioned in the
prompt within videos. (a) The video successfully captures the spa-
tial relationship and objects described in the prompt. (b) The gen-
erated video does not contain the intended relationship.

horizontal and vertical positioning of object pairs. During
evaluation, distances on the designated axis (e.g., left-right)
are expected to be greater than those on the other orienta-
tion (e.g., top-bottom). Under this condition, we observe
the intersection over the union metric (IoU) of two objects
to obtain the final score, where IoU values that fall below a
specified threshold result in a score of 100%, and the val-
ues exceeding the threshold are multiplied by a coefficient
based on the IoU to determine the final score. We use GRiT
to detect the objects and their locations within the gener-
ated video frames, and we also calculate the Intersection
over Union (IoU) of the two objects’ bounding boxes as the
final spatial relationship score coefficient.

(a) bedroom scene detected, score = 1 

(b) bedroom scene not detected, score = 0 

Prompt: bedroom 

Figure A21. Visualization of Scene. We present examples of
generating the required scene (where 1 represents success, and 0
indicates failure). (a) The required scene is generated successfully.
(b) The video does not show the scene as required.

Scene. For a scenario described by the text prompt, we
need to evaluate whether the synthesized video is consis-
tent with the intended scene. For example, when prompted
to “ocean”, the generated video should be “ocean” instead
of “river”. We use Tag2Text [45] to caption the generated
scenes, and then check the correspondence with scene de-
scriptions in the text prompt. Specifically, each word related
to the scene in the text prompt needs to appear in the pre-
dicted caption, but the word order can be different. We then
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report the proportion of frames in which the corresponding
scene has been successfully generated.

(a) consistent appearance style with prompt (score 33.07%) 

(b) inconsistent appearance style with prompt (score 20.93%) 

Prompt: the bund Shanghai, Van Gogh style 

Figure A22. Visualization of Appearance Style. We demon-
strate examples of generating the required appearance style within
videos, showcasing different levels of success as assessed by our
appearance style score metrics. (a) The generated video follows
the requested Van Gogh style. (b) The video does not show the
desired appearance style.

Appearance Style. For stylized video generation, we first
extract the style description in the text prompt, then eval-
uate the video-text feature similarity to assess appearance
style consistency. Specifically, We use CLIP [83] to extract
features from each frame and the text, and then compute the
mean cosine similarity of the normalized features. CLIP
demonstrates robust zero-shot performance in perceiving
textual descriptions of styles, aiding our evaluation of style
consistency.

(a) consistent temporal style with prompt (score 30.50%) 

(b) inconsistent temporal style with prompt (score 8.74%) 

Prompt: a cute happy Corgi playing in park, sunset, zoom in

Figure A23. Visualization of Temporal Style. We demonstrate
two different generated videos to show the consistency of their
temporal style with the prompt at various degrees, measured by our
temporal style score. (a) The generated video follows the “zoom
in” temporal style. (b) The video’s temporal style does not align
with the prompt.

Temporal Style. In videos, style is not only spatially nar-
rated in individual frames, but also temporally revealed in
different types of object motions and camera motions. For
example, we are interested in whether the text prompt spec-
ifies “zoom in” or “zoom out”, “pan left” or “pan right”,
and whether the generated video can show such kind of
camera motion. Additionally, there are different types of
other temporal styles like “super slow motion”, “camera

shaking”, and “racking focus”. In terms of temporal aware-
ness, ViCLIP [105] is pre-trained on a diverse 10M video-
text dataset, which shows strong zero-shot learning capabil-
ities in video-text retrieval tasks. When a video is generated
based on a specified temporal style, we use ViCLIP to cal-
culate the video-text feature similarity to reflect temporal
style consistency.

(a) consistent with overall prompt  (score 40.10%) 

(b) inconsistent with overall prompt (score 28.87%) 

Prompt: a corgi is playing drum kit 

Figure A24. Visualization of Overall Consistency. We demon-
strate different examples that illustrate the extent to which they
align with the prompt, as measured by our overall score metrics
(larger values denote better consistency). (a) The video aligns
closely with the prompt. (b) The video lacks alignment with the
target concept.

Overall Consistency. We also use overall video-text con-
sistency computed by ViCLIP as an aiding metric to re-
flect both semantics and style consistency, where the text
prompts contain different semantics and styles.

H. More Details on Prompt Suite
H.1. Prompt Suite per Evaluation Dimension

For each VBench dimension, we carefully designed around
100 prompts as the test cases. For semantics-related prompt
suites, we provide clear semantics labels to each prompt in
the prompt suites to facilitate efficient and accurate evalu-
ation. For example, we provide the object class labels for
prompt suites of Object Class, Multiple Objects, and Spa-
tial Relationship. We also provide color labels for Color
prompts, relationship tags for Spatial Relationship prompts,
and style labels for Appearance Style. We detail the prompt
suite for each dimension as follows.
Subject Consistency. We choose 19 representative living
or movable object categories from the COCO [68] dataset’s
80 object categories. These categories encompass animals
and transportation-related items. Each object category is
associated with a set of carefully crafted actions or move-
ments, ensuring logical coherence between the actions and
their respective objects. A list of distinct prompts used for
evaluating subject consistency is therefore created.
Background Consistency. We carefully select a list of dis-
tinct and representative scenes from the Places365 [131]
dataset, aiming to include a diverse set of scenes within a

19



limited number of prompts. The selected scenes contain in-
door, modern, rural, and various other settings, thereby en-
suring the representation of a wide range of environmental
contexts. This prompt suite is applied to both the Back-
ground Consistency dimension and the Scene dimension.
Temporal Flickering. To more effectively evaluate tempo-
ral flickering, it is essential to eliminate interference from
other temporal dimensions. According to observations in
Section G, whether the scene is static does not affect the
temporal flickering ranking among models. Ultimately, we
selected a set of prompts, covering various topics, scenar-
ios, and prompt lengths. Each prompt is accompanied by a
prefix instructing the model to generate a static scene.
Motion Smoothness. Since Subject Consistency’s prompt
suite involves movements performed by different subjects,
they serve as a good benchmark for Motion Smoothness
as well. To minimize the number of videos needed to be
sampled for each model in evaluation, we share the same
prompt suite for both dimensions.
Dynamic Degree. Considering the issue of the model tend-
ing to generate static videos even when prompted with de-
scriptions of motion, we use the same prompt suite as Sub-
ject Consistency’s, which includes a variety of motion de-
scriptions.
Object Class. We use the COCO dataset [68] and drop the
object mouse, due to the potential confusion as it can be
interpreted as both device and animal. We then append arti-
cles to the rest of the 79 objects and create a list of prompts
related to different object classes.
Multiple Objects. We categorize COCO objects into vari-
ous groups so that it will be reasonable for them to appear
together. These categories include animals, indoor items,
dining objects, bathroom items, and outdoor items. We then
generate a list of prompts by composing objects within each
category.
Human Action. From the Kinetics-400 dataset [56], we
carefully extract a subset of 100 actions by considering both
diversity and minimal overlaps in their meanings. Our ap-
proach involves selecting only the actions that are unique.
For instance, within the category of actions related to play-
ing musical instruments, we only keep those actions that
are considered dissimilar in terms of human posture and ac-
tions. The resulting selection contains a wide spectrum of
actions. Subsequently, we integrate each action in the form
of “a person is doing something”, and craft a list of human-
centric action prompts.
Color. We select representative classes from COCO objects
and establish the color scope of our prompt suite. On the se-
lection of objects, we select objects that are unique in shape
and similar objects. For example, “skateboard” and “surf-
board” are excluded due to their similar shapes and poten-
tial wrong detection results by detection models. A similar
criterion is applied to the color selection, we aim to select

colors to include a broad spectrum while avoiding closely
related colors. For example, “gold” and “yellow” are con-
sidered similar, therefore we only include “yellow” in our
color scope. Our prompts are generated by combining each
object with a few of their typical colors, and we only keep
objects with more than three typical colors.
Spatial Relationship. We organize COCO objects into dif-
ferent groups so that it is natural for them to be composed in
the same scene with each other. Some examples of the cat-
egories include personal items, animals, and sports-related
items. Additionally, we define relationship categories to be
“left and right” and “top and bottom”. We then select re-
lationships that are reasonable for the objects within each
category, resulting in a list of prompts designed to describe
spatial relationships between objects.
Scene. We use the same prompt suite as Background Con-
sistency, as both requires prompts describing different gen-
eral scenes.
Appearance Style. We select a list of sentences covering
a wide range of scenarios and themes and also define our
list of appearance styles. The styles are carefully crafted to
ensure diversity. For example, we include the representative
“Van Gogh style” and traditional “Ukiyo style” for the clear
contrast in their color schemes, brushwork techniques, and
overall aesthetic expressions. Each scenario description is
then composed with a list of appearance styles to form the
prompts.
Temporal Style. We carefully curate a diverse list of rep-
resentative temporal styles to represent a broad spectrum
of camera movement and temporal effects commonly em-
ployed in video production. Our selected temporal styles
include variations in motion speed, camera perspective, and
dynamic effects, aiming to present a comprehensive range
of cinematic techniques. Each sentence for a scenario is
then composed with a list of temporal styles.
Overall Consistency. We create a range of prompts, cover-
ing different content categories and scenarios such as “nat-
ural scenery”, “fantasy and sci-fi”, “character and fictional
beings” etc., these prompts are of varied length, and we in-
clude both general and specific descriptions in our prompts.

H.2. Prompt Suite per Category

In Section 3.2 of the main paper on Prompt Suite Per Cat-
egory, we employ LLM [130] as the first step to categorize
the collection of human-curated prompts into eight content
categories. The input template for the language model is
shown in Table A3. The accuracy of classification is around
95%, and we manually go through each classified prompt to
filter out 100 prompts for each content category.
Animal. These prompts focus on various animals and their
behaviors in different environments, such as “a frog eating
an ant”, “a harbour seal swimming near the shore”, and “a
squirrel eating nuts”. This prompt suite captures diverse
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The assistant gives helpful, detailed, and polite
answers to the user’s questions. Please act as a lan-
guage expert, able to choose one or more suitable
categories from [Animal, Architecture,
Food, Human, Lifestyle, Plant,
Scenery, Vehicles] for the given text.
Given the input text, you should return the answer
without explanation. For example, if the input is
[A man eats hamburgers.], the output tag
format should be [Food, Human].
The given text is Input text.

Table A3. Category Classification. We employ LLM to deter-
mine the content categories of collected text descriptions.

species from domestic pets to wild animals in various ac-
tivities, such as feeding, playing, or simply existing in their
natural or adapted environments.
Architecture. We keep prompts that include various types
of architecture, including the different types of buildings
and structures, such as “the view of the Sydney opera house
from the other side of the harbor”, “illuminated tower in
Berlin”, and “a tree house in the woods”.
Food. These prompts are diverse and all revolve around
food and beverages. They range from specific dishes and
preparation methods to more conceptual food art and eating
scenarios. Examples include “Freshly baked finger-licking
cookies”, “A person slicing a vegetable”, and ”Close-up
video of Japanese food”.
Human. These prompts describe a wide range of human ac-
tivities, interactions, and scenes, each focusing on specific
individuals or groups engaged in various actions. Here are
some examples: “A family wearing paper bag masks”, “Boy
sitting on grass petting a dog”, “Group of people protest-
ing”, and “Father and son holding hands”. Each of these
prompts paints a vivid picture of human life, capturing di-
verse moments from daily activities to special events, pro-
fessional settings to personal interactions.
Lifestyle. These prompts describe various indoor scenes
and activities, covering a wide range of settings and situa-
tions. For instance, “Interior design of the bar section” and
“Dog on floor in room” are simple everyday indoor scenes.
Each prompt captures a specific aspect of indoor life, rang-
ing from personal moments and family interactions to pro-
fessional and leisure activities, reflecting the diversity of ex-
periences within indoor lifestyles.
Plant. These prompts mainly focus on plants and trees.
Here are some examples: “Video of an indoor green plant”,
“A coconut tree by the house”, and “Variety of trees and
plants in a botanical garden”.
Scenery. These prompts describe various natural and ur-
ban landscapes, each capturing a distinct aspect of the envi-

ronment. Here are some examples: “View of the sea from
an abandoned building”, “Aerial footage of a city at night”,
and “Scenery of desert landscape”. Each prompt can be of
natural settings like beaches and mountains, the structured
scenery of agricultural lands, or urban environments.
Vehicles. These prompts depict various forms of trans-
portation and related scenes, including various vehicles like
trains, cars, buses, motorcycles, and boats in diverse set-
tings ranging from urban streets to natural landscapes. Here
are some examples: “A modern railway station in Malaysia
used for public transportation”, “Train arriving at a station”,
“Elderly couple checking engine of automobile”, and “He-
licopter landing on the street”.

I. Human Preference Annotation

I.1. Human Annotation Procedures

Labeling Instructions. To systematically communicate
with human annotators about labeling rules, we prepare a la-
beling instruction document for each of the 16 dimensions.
Each labeling instruction document consists of several im-
portant elements. First, we introduce the labeling user in-
terface (shown in Figure 4 of the main paper), including the
two videos in comparison, the location of prompts and ques-
tions, the control for video playback and stop, and the three
choices to make (i.e., “A is better”, “B is better”, or “Same
quality”). Second, we explain the dimension of interest.
Since we want to verify the human alignment of VBench
in each fine-grained dimension, we conduct the labeling of
different dimensions separately. In each document, we elab-
orate on the definition of the current dimension, including
aspects to consider or discard. For instance, for the Subject
Consistency dimension, annotators are asked to only focus
on the look of the main subject, and not to consider the de-
gree of temporal flickering, or the video alignment with the
text prompt, and many other irrelevant dimensions. Each
aspect to consider or discard is illustrated by both text de-
scriptions and examples of synthesized videos. Third, we
categorize various scenarios that annotators may encounter
while annotating this dimension (e.g., what is considered as
“better”, and what is considered as “same quality”). For
each scenario, we provide explanatory examples.
Quality Assurance in Preference Annotations. To guar-
antee the accuracy of human preference annotations, we im-
plement a systematic five-step approach: 1) Labeling In-
structions Preparation: For each evaluation dimension, we
provide clear and well-organized labeling instructions with
examples. 2) Pre-Labeling Trial: Prior to the main annota-
tion task, we conduct a pre-labeling trial, where annotators
are assigned to annotate only 60 samples. We go through
all 60 annotations and communicate with annotators about
each wrong label, and clarify any misunderstanding or po-
tential doubts in the labeling instructions. 3) Labeling In-
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structions Update: We update the labeling instructions ac-
cording to feedback from the human annotators, and sup-
plement the wrongly labeled samples into the labeling in-
structions. 4) Post-Labeling Checks by Annotators: Upon
labeling all samples for a particular dimension, the samples
are grouped as 60 samples per package. In each package of
60 samples, human annotators go through 20% of randomly
selected samples for quality checking. If for any package
the error rate exceeds 10%, the entire package is sent back
for re-labeling conducted by a different annotator. 5) Post-
Labeling Checks by Authors: Upon labeling and possible
re-labelings, we conduct the same post-labeling checks pro-
cedure similar to step 4. For any labeling errors spotted,
we communicate with the human annotator for correction,
and ask them to go through the entire package again. If
any package reports an error rate higher than 10%, the en-
tire labeled samples (all packages) for this dimension are
considered invalid. We communicate with human annota-
tors regarding possible problems encountered during anno-
tation, and go back to step 1 to conduct annotation for this
dimension all over again.

I.2. VLM Tuning

VLM Tuning. Our human preference annotations are
mainly used to validate the alignment of VBench evalua-
tions with human perception in each dimension. We show
that these annotations have the potential to be used for
broader applications, such as fine-tuning VLM models to
align more closely with human preferences. VideoChat [64]
uses a pre-trained video encoder and a large language model
to align and train video VLM with instruction data. We
organize data from VBench for fine-tuning, enhancing the
model’s ability to assess video generation. By utilizing
instruction data of the VBench Dataset coupled with human
preference tags, VLM, through its cognitive chain, is
with its Chain of Thought to choose suitable evaluation
metrics and furnishing scores in accordance. Upon giv-
ing the prompt into the VLM and asking: “Give the
appropriate evaluation metrics”, we obtain
the dimensions to be evaluated from Chain of Thought, as
shown in Table A4. We feed the derived metrics along with
the video into the VLM, and ask two additional questions:
“Please observe the video and describe
it based on the provided metrics.” and
“Predict the assessment score of the
video within these metrics.” We show exam-
ples of before and after VLM Tuning in Figure A25
Data Preparation. We organize human preference anno-
tations and model scores across different dimensions into
training datasets. For model scores, each video’s ratings
are mapped from 0-1 to a 0-10 scale and are coupled with
questions used for human annotation to form our instruction
data. Evaluations of different aspects of the same video are

<SYSTEM>: You are an assistant with fair
and objective standards for video assess-
ment. Given the input statement for the
video generation model: {input text},
please select appropriate evaluation dimen-
sions from [‘subject consistency’,
‘background consistency’,
‘temporal flickering’, ‘motion
smoothness’, ‘dynamic degree’,
‘aesthetic quality’, ‘imaging
quality’, ‘object class’,
‘multiple objects’, ‘human
action’, ‘color’, ‘spatial
relationship’, ‘scene’, ‘temporal
style’, ’appearance style’,
‘overall consistency’].

<USER>: a dilapidated phone booth stood as a
relic of a bygone era on the sidewalk, frozen in
time.
<ASSISTANT>: Based on the input state-
ment, the following evaluation dimensions
may be relevant: subject consistency,
background consistency, temporal
flickering, motion smoothness,
dynamic degree, aesthetic
quality, imaging quality,
scene, temporal style, overall
consistency

Table A4. VLM Chain of Thought. VLM suggests appropriate
evaluation dimensions based on the user-input video prompt.

grouped to facilitate the VLM’s ability to engage in multi-
turn dialogues. As for human preference annotations, pairs
of videos along with corresponding questions and prefer-
ence options are organized into instruction data, thereby
somewhat enhancing the model with the capability to make
evaluative judgments.
Implementation Details Our approach uses VideoChat-
embed [64] as the baseline model. The model undergoes
fine-tuning on a set of 30,000 instruction pairs. We fine-tune
the model for 3 epochs using a learning rate of 2e-5 and an
overall batch size of 64. The training for our model takes
about one hour when performed on 8 A100-80GB GPUs.

J. More Implementation Details
J.1. Video Generation Models in Evaluation

To evaluate our benchmark on recent advances, we adopt
four models for comparison, and more will be added as
they become open-sourced. Details of models and sampling
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Prompt: a dilapidated phone booth stood as a relic of a bygone era on the sidewalk, frozen in time

Before VLM Tuning

VideoChat

The input video prompt is “a dilapidated phone booth stood as a relic of a bygone era on the sidewalk,
frozen in time”, please observe the video and describe it based on the subject consistency.

The video depicts an old and worn out phone booth standing alone, frozen in time, on the sidewalk. The 
boxy structure is surrounded by a brick wall, creating a sense of isolation. It appears to be an outdated 
piece of technology, a relic from a bygone era, which is now abandoned and left to stand alone on its own.

Predict the assessment score(0-10) of the video within subject consistency metrics.

The video would likely receive a low assessment score due to its subject consistency. Subject consistencies 
are measures of the coherence and continuity between the elements within an image or video. The subject 
matter of an abandoned phone booth standing alone on a sidewalk is not consistent with the typical 
subject content that is typically seen within a video, such as landscapes, people, or events. As such, the 
assessments scores for subjective consistencymetrics are likely to be low for this video due its lack of 
cohesive subject material.

Video to be Evaluated

VideoChat

User

User

VideoChat

The input video prompt is “a dilapidated phone booth stood as a relic of a bygone era on the sidewalk,
frozen in time”, please observe the video and describe it based on the subject consistency.

First, we see an old metal phone booth that has been left behind, standing on the sidewalk. It looks like it 
hasn’t been used in a while and is in a state of disrepair. The metal appears to be rusted and is surrounded 
by patches of grass. The booth is small and old, with a glass window and a door that has been broken and 
repaired with tape. There is a black door on the side of the booth, and a white door handle.
Next, we see the same phone booth, but the glass window and door are covered in a dark tint, making it 
difficult to see inside. The booth looks old and vintage, with a round dial on the front. A blue light and sign 
on the front of the booth gives it a retro feel. There are patches of grass around the booth and a sidewalk 
next to it.
Finally, we see the same phone booth in the same state of disrepair, but it is sitting on the ground rather 
than standing. It has an old wooden door, a round dial on the front, and a round window. The glass in the 
window is cracked, but it still allows light in. The booth is surrounded by grass and is next to a brick wall. 
The surrounding area appears to be abandoned and overgrown with weeds.

Predict the assessment score(0-10) of the video within subject consistency metrics.

The assessment score of the video is 8 within subject consistency. It maintains a high level of consistency in 
its description throughout the duration of the video. The metal phone booth is the main object of focus and 
it remains in the same location and is described in a similar manner throughout the video. The only 
difference is that the glass window and door are covered in a dark tint, making it harder to see inside. 
Overall, the video does an excellent job of capturing the subject of a dilapidated phone booth in the same 
location and in a similar state of disrepair throughout the video.

VideoChat

User

User

After VLM Tuning

Figure A25. VLM Tuning Example. We use human preference annotation to fine-tune a VLM, and demonstrate that such fine-tuning can
improve VLM’s ability in evaluating video generation capabilities in specific dimensions.

23



Figure A26. VBench Results across Eight Content Categories (by Category per Chart) (best viewed in color). For each chart, we plot
the VBench evaluation results across different models on the same content category.

Table A5. Validate VBench’s Human Alignment. We report VBench Win Ratios (left) / Human Win Ratios (right) for each dimension
and each model. Our experiments show that VBench evaluations across all dimensions closely match human perceptions.

Models Consistency
Subject

Consistency
Background

Flickering
Temporal

Smoothness
Motion

Degree
Dynamic

Quality
Aesthetic

Quality
Imaging

Class
Object

LaVie [104] 67.87% / 69.95% 85.27% / 65.04% 73.42% / 87.96% 69.54% / 65.65% 41.81% / 53.10% 77.56% / 83.41% 77.20% / 79.46% 57.55% / 79.20%
ModelScope [72, 98] 49.07% / 56.30% 49.96% / 56.36% 65.42% / 62.44% 58.61% / 59.58% 52.92% / 53.84% 67.74% / 63.15% 60.00% / 68.53% 49.37% / 49.58%

VideoCrafter [35] 24.72% / 20.42% 15.89% / 27.21% 31.20% / 43.64% 10.00% / 13.80% 68.47% / 62.18% 35.34% / 32.33% 55.05% / 37.85% 54.18% / 41.77%
CogVideo [41] 58.33% / 53.33% 48.88% / 51.40% 29.96% / 5.96% 61.85% / 60.97% 36.81% / 30.88% 19.35% / 21.11% 7.74% / 14.16% 38.90% / 29.45%

Correlation 96.51% 94.80% 88.73% 99.80% 82.09% 98.65% 92.16% 80.37%

Models Objects
Multiple

Action
Human Color Relationship

Spatial Scene Style
Appearance

Style
Temporal

Consistency
Overall

LaVie [104] 53.37% / 57.97% 54.43% / 58.13% 52.31% / 51.37% 52.30% / 49.81% 59.69% / 77.52% 61.85% / 58.22% 69.07% / 55.73% 70.82% / 77.35%
ModelScope [72, 98] 57.15% / 62.15% 51.10% / 53.07% 50.12% / 49.73% 53.25% / 53.15% 48.22% / 50.00% 57.48% / 54.93% 65.40% / 57.50% 66.31% / 60.07%

VideoCrafter [35] 48.74% / 49.63% 52.17% / 47.87% 48.71% / 47.92% 56.11% / 54.66% 52.79% / 46.05% 36.67% / 40.07% 65.40% / 51.90% 62.65% / 48.10%
CogVideo [41] 40.73% / 30.24% 42.30% / 40.93% 48.86% / 50.98% 38.33% / 42.38% 39.30% / 26.43% 44.00% / 46.78% 0.13% / 34.87% 0.22% / 14.48%

Correlation 98.98% 89.15% 60.73% 97.59% 94.07% 99.65% 97.53% 93.27%

Table A6. VBench Evaluation Results on the WebVid-Avg Reference Baseline. This table shows the VBench evaluation results on the
WebVid-Avg baseline. We provide results from other models and baselines as well for a comprehensive view.

Models Consistency
Subject

Consistency
Background

Smoothness
Motion

Degree
Dynamic

Quality
Aesthetic

Quality
Imaging

Style
Appearance

Style
Temporal

Consistency
Overall

LaVie [104] 91.41% 97.47% 96.38% 49.72% 54.94% 61.90% 23.56% 25.93% 26.41%
ModelScope [72, 98] 89.87% 95.29% 95.79% 66.39% 52.06% 58.57% 23.39% 25.37% 25.67%

VideoCrafter [35] 86.24% 92.88% 91.79% 89.72% 44.41% 57.22% 21.57% 25.42% 25.21%
CogVideo [41] 92.19% 95.42% 96.47% 42.22% 38.18% 41.03% 22.01% 7.80% 7.70%
Empirical Min 14.62% 26.15% 70.60% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00%
WebVid Avg 96.17% 96.59% 98.17% 44.13% 42.37% 58.22% 22.15% 25.77% 34.14%

Empirical Max 100.00% 100.00% 99.75% 100.00% 100.00% 100.00% 28.55% 36.40% 36.40%
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Table A7. VBench Results across Eight Content Categories. We show the VBench evaluation results on the four T2V models, across
eight content categories, on various evaluation dimensions.

Models Categories
Consistency

Subject
Consistency
Background

Smoothness
Motion

Degree
Dynamic

Quality
Aesthetic

Quality
Imaging

Consistency
Overall

[104]
LaVie

Animal 97.49% 97.18% 97.29% 15.20% 48.26% 68.81% 26.43%
Architecture 98.04% 97.38% 97.83% 5.20% 54.20% 69.30% 25.46%

Food 97.11% 96.90% 98.18% 28.80% 54.15% 65.24% 24.88%
Lifestyle 96.10% 96.19% 98.08% 33.60% 48.76% 64.02% 24.43%
Scenery 97.27% 97.06% 97.58% 6.40% 51.76% 63.86% 24.56%
Human 96.11% 95.88% 97.57% 39.00% 51.87% 64.07% 24.63%
Plant 97.52% 97.20% 96.73% 16.40% 52.68% 67.86% 24.50%

Vehicles 95.23% 95.82% 97.11% 34.00% 50.70% 61.02% 24.51%

[72, 98]
ModelScope

Animal 94.08% 95.80% 96.40% 37.20% 47.32% 60.30% 26.58%
Architecture 95.77% 95.88% 97.20% 24.80% 52.10% 58.38% 24.89%

Food 94.53% 95.53% 97.17% 40.80% 53.06% 64.39% 24.40%
Lifestyle 94.36% 95.17% 97.18% 41.00% 45.77% 59.62% 23.51%
Scenery 94.88% 95.57% 97.03% 26.00% 48.57% 57.49% 23.28%
Human 93.37% 94.21% 96.45% 56.00% 48.14% 58.41% 22.84%
Plant 95.14% 96.26% 96.48% 26.40% 51.03% 63.83% 23.55%

Vehicles 93.17% 94.61% 96.47% 50.20% 47.53% 55.75% 23.60%

[35]
VideoCrafter

Animal 87.01% 92.40% 91.80% 79.60% 40.51% 59.79% 25.47%
Architecture 91.18% 92.93% 94.83% 47.80% 43.71% 59.63% 24.27%

Food 89.50% 92.87% 93.44% 75.00% 48.19% 63.47% 24.47%
Lifestyle 89.51% 91.87% 93.63% 72.20% 39.84% 59.44% 24.01%
Scenery 89.67% 92.86% 94.17% 51.80% 43.06% 58.98% 23.20%
Human 88.50% 90.92% 92.35% 86.20% 42.62% 59.23% 23.31%
Plant 89.86% 93.57% 93.72% 52.00% 41.81% 63.81% 23.41%

Vehicles 88.38% 91.44% 93.04% 70.60% 42.95% 54.14% 23.39%

[41]
CogVideo

Animal 92.95% 94.69% 96.65% 30.20% 45.37% 48.45% 8.26%
Architecture 95.00% 94.65% 97.39% 10.20% 46.29% 45.33% 7.48%

Food 94.08% 94.94% 96.99% 32.00% 52.79% 45.05% 7.01%
Lifestyle 93.80% 93.93% 96.93% 28.00% 41.57% 41.28% 7.85%
Scenery 95.27% 95.46% 97.58% 13.20% 46.72% 40.49% 7.66%
Human 92.08% 92.29% 95.93% 46.80% 46.38% 43.81% 8.29%
Plant 94.86% 95.71% 97.05% 19.60% 48.63% 43.22% 6.65%

Vehicles 93.11% 93.27% 96.80% 33.60% 44.18% 41.05% 8.34%

strategy are listed as follows.
LaVie. LaVie [104] is a high-quality video generation
model that incorporates cascaded latent diffusion models.
Specifically, a set of temporal modules is attached to the
vanilla Stable Diffusion [84] model and the entire model is
jointly trained on both images and videos to achieve video
generation. For each prompt, we sample 16 continuous
frames of size 512×512 at 8 frames per second (FPS). We
use the DDPM sampling of 250 steps. The initial random
seed is set to 2 and the classifier-free guidance is set to 7.
ModelScope. ModelScope [72, 98] is a diffusion-based
text-to-video generation model. We adopt its official infer-
ence code and sample 16 frames of size 256×256 at 8 FPS.
VideoCrafter. VideoCrafter [35] is a toolkit for text-to-
video generation and editing. We adopt the VideoCrafter
0.9 version (a.k.a., LVDM) and utilize its base generic text-
to-video generation model. We use the official inference
code to sample 16 frames of size 256×256 at 8 FPS. The

initial random seed is set to 2 during sampling.
CogVideo. CogVideo [41] is a transformer-based text-to-
video generation model that inherits the pretrained text-
to-image model CogView2 [20]. Since the official infer-
ence code requires simplified Chinese input, we translate
all prompts into Chinese. We sample 33 frames of size
480×480 at 10 FPS for each video, according to its default
settings. During sampling, all stages are involved in the
pipelines, including sequential generation, frame interpola-
tion, and recursive interpolation. The initial random seed is
also set to 2 for a fair comparison.

J.2. Reference Baselines

In the main paper, we devise the Empirical Max and Empir-
ical Min baselines to approximate the maximum / minimum
scores that videos might be able to achieve. We also devise
the WebVid-Avg baseline to reflect the average video quality
of WebVid-10M dataset [5] as a reference. The numerical
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results are displayed in Table 1 in the main paper, and Ta-
ble A6 in this Supplementary File. We provide additional
details on approximating these values as follows.
Empirical Max. (1) WebVid-10M’s Maximum. For dimen-
sions where the 100% score is unlikely to be achieved by
any video, we retrieve WebVid-10M’s real videos and report
the highest-scoring video’s result. Examples of such dimen-
sions include Motion Smoothness, Scene, Appearance Style,
Temporal Style, and Overall Consistency. (2) Theoretical
100%. For dimensions where there exist videos that can
achieve 100%, we directly use 100% as the empirical max-
imum value. For temporal consistency dimensions Subject
Consistency, Background Consistency, and Temporal Flick-
ering, a completely static video corresponds to the 100%
score. For Dynamic Degree, a set of highly dynamic videos
can achieve the 100% ratio of dynamic degree. For the
frame-wise quality dimensions Aesthetic Quality and Imag-
ing Quality, a video consisting of 100%-scoring frames re-
sults in a final 100% score. For video-text semantics di-
mensions Object Class, Multiple Objects, Human Actions,
Color, and Spatial Relationship, videos with the correct se-
mantics specified in the text prompt can score 100%.
Empirical Min. (1) Gaussian Noise Videos. For video-
text feature similarity dimensions Appearance Style, Tem-
poral Style, and Overall Consistency, we use videos of i.i.d.
Gaussian noise and the corresponding prompt suites to com-
pute the corresponding score, and select the smallest value
as the approximated empirical minimum (with some actu-
ally reaching 0%). For Temporal Flickering and Motion
Smoothness, we directly compute the score of the Gaussian
noise videos and take the minimum scoring video’s result.
For Human Action, our method suite gives 0% on the Gaus-
sian noise videos. (2) Composed Videos. For temporal con-
sistency dimensions Subject Consistency and Background
Consistency, we randomly sample frames from different
WebVid-10M [5] videos to form a video with dynamically
shifting content. This procedure is repeated 1000 times,
and the minimum score among all videos obtained serves
as the empirical minimum reference. (3) Theoretical 0%.
For dimensions where there exist videos that can achieve
0%, we directly use 0% as the empirical minimum value.
For Dynamic Degree, a set of static videos can achieve the
0% ratio of dynamic degree. For the frame-wise dimen-
sions Aesthetic Quality and Imaging Quality, a video con-
sisting of 0%-scoring frames results in a final 0% score.
For video-text semantics dimensions Object Class, Multi-
ple Objects, Color, Spatial Relationship, and Scene, videos
with the incorrect semantics specified in the text prompt can
score 100%.
WebVid-Avg. For dimensions where WebVid-10M videos
can be retrieved with high confidence according to their
captions, such as Subject Consistency, Background Con-
sistency, Motion Smoothness, Dynamic Degree, Aesthetic

Quality, Imaging Quality, Appearance Style, Temporal
Style, and Overall Consistency, we compute the average
score for all retrieved videos in relation to the corresponding
dimension. This average score serves as a reference value
for the average of real videos. The results are visualized in
the main paper Figure 6 (b), and detailed in Table A6 in this
Supplementary File.

J.3. Normalization for Radar Chart Visualization

In the radar charts, we perform normalization to clearly vi-
sualize the relative performance. We detail the normaliza-
tion methods as follows:

• Main Paper Figure 2. VBench Evaluation Results of
Video Generative Models - For each dimension, we map
the maximum score achieved by one of the T2V models
to 0.8, and the minimum score to 0.3, and linearly map
the remaining models’ scores to the radar chart axes. The
radar chart axes have a range from 0.0 to 1.0.

• Main Paper Figure 6 (a). T2V vs. T2I - For each dimen-
sion, we map the maximum score achieved by one of the
models (including T2I and T2V models) to 0.8, and the
minimum score to 0.3, and linearly map the remaining
models’ scores to the radar chart axes. The radar chart
axes have a range from 0.0 to 1.0.

• Main Paper Figure 6 (b). T2V vs. WebV-Avg & Max - For
each dimension, we map the maximum score achieved
by one of the models (including the Empirical Max and
WebVid-Avg baselines) to 0.8, and the minimum score to
0.3, and linearly map the remaining models’ scores to the
radar chart axes. The radar chart axes have a range from
0.0 to 1.0.

• Main Paper Figure 7. VBench Results across Eight Con-
tent Categories (by Model) - For each dimension, there
are 32 numerical results corresponding to the four T2V
models and eight content categories. We map the maxi-
mum score among the 32 results to 1.0, and the minimum
score among the 32 results to 0.0, and linearly map the re-
maining 30 scores to respective radar charts’ axes. The
radar chart axes have a range from 0.0 to 1.0.

• Supp File Figure A26. VBench Results across Eight Con-
tent Categories (by Category) - Unlike Figure 7 in the
main paper which put different categories of the same
model in one radar chart, in Figure A26 we use an alter-
native visualization method, that is, collecting different
models’ results of the same category in one radar chart.
For each dimension, there are 32 numerical results corre-
sponding to the four T2V models and eight content cate-
gories. We map the maximum score among the 32 results
to 0.8, and the minimum score among the 32 results to
0.3, and linearly map the remaining 30 scores to respec-
tive radar charts’ axes. The radar chart axes have a range
from 0.0 to 1.0.
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Table A8. VBench Evaluation Results of Video vs. Image Generation Models. We compare the performance of four video generation
models against three image generation models. For each evaluation dimension, a higher score represents relatively better performance. For
Overall Consistency we replaced the ViCLIP approach by CLIP to enable evaluating image generation models.

Models Quality
Aesthetic

Quality
Imaging

Class
Object

Objects
Multiple

Action
Human Color Relationship

Spatial Scene Style
Appearance

Consistency
Overall

LaVie [104] 54.94% 61.90% 91.82% 33.32% 96.80% 86.39% 34.09% 52.69% 23.56% 32.96%
ModelScope [72, 98] 52.06% 58.57% 82.25% 38.98% 92.40% 81.72% 33.68% 39.26% 23.39% 31.99%

VideoCrafter [35] 44.41% 57.22% 87.34% 25.93% 93.00% 78.84% 36.74% 43.36% 21.57% 30.78%
CogVideo [41] 38.18% 41.03% 73.40% 18.11% 78.20% 79.57% 18.24% 28.24% 22.01% 27.80%

SD1.4 [84] 65.85% 69.86% 91.14% 34.39% 91.80% 90.57% 61.89% 52.33% 25.35% 32.59%
SD2.1 [84] 66.50% 69.10% 93.42% 51.22% 89.00% 91.15% 73.11% 58.14% 25.48% 33.08%
SDXL [81] 70.38% 68.79% 91.39% 69.51% 91.20% 88.92% 86.17% 54.65% 25.23% 33.77%

K. Potential Negative Societal Impacts

Video generation models could be maliciously applied to
generate fake content involving human figures. Moreover,
generative models can potentially inherit biases from the
training datasets [21]. Therefore, we recognize the impor-
tance of considering ethical and safety aspects when eval-
uating video generation models. We plan to include safety
and equality dimensions in future iterations of VBench. We
also urge users to apply video generation models with dis-
cretion.

L. Limitations and Future Work

Limited Amount of Open-Sourced T2V Models: Cur-
rently, the number of open-sourced T2V models are still
limited. We will open-source our VBench and encourage
more T2V models to participate in the evaluation, including
but not limited to [1–4, 8, 124], so that we can provide more
informed insights into the current state of T2V, and provide
more annotated data on T2V generation results generated
by different models.

Evaluation of Other Video Generation Tasks: Text-to-
video (T2V) is a fundamental task in video generation, and
there are other related video generation tasks such as video-
driven (i.e., video editing) [11, 12, 18, 29, 43, 58, 62, 67,
69, 76, 80, 82, 101, 116, 119, 121, 127–129], image-driven
(i.e., image-to-video) [14, 16, 23, 27, 32, 76, 77, 88, 90,
100, 102, 106, 107, 122, 123], personalized video gener-
ation [33, 36, 51, 129], and other types of multi-modal-
controlled video synthesis [15, 17, 42, 51, 58, 73, 75, 100,
103, 116, 117, 125, 126]. We build our VBench towards
T2V as the initial step, and plan to extend our bench-
mark suite to accommodate other modalities’ controls by
adding towards the “Video-Condition Consistency” dimen-
sions. Our “Video Quality” dimensions are readily available
for evaluating these video generation tasks.

M. Additional Experimental Results

In this section, we provide additional numerical results that
correspond to the main paper visualizations. We list the
resulting tables and figures as follows:
• In Table A8, we show the VBench evaluation results of

four video generation models and three image genera-
tion models, further illustrating through numerical results
the significant differences that exist in certain dimensions
between video generation models and image generation
models (corresponding to main paper Figure 6 (a)). For
Overall Consistency we replaced the ViCLIP approach
by CLIP to enable evaluating image generation models.

• In Table A5, we show the win ratio on evaluation results
predicted by VBench and Human across four models and
all dimensions, along with the correlation (ρ) between
Human and VBench results (corresponding to main pa-
per Figure 5).

• In Table A6, we show the results of WebVid-Avg and
compare them with the results of four models and other
reference baselines (corresponding to main paper Figure
6 (b)).

• In Table A7, we show all the evaluation results of
VBench across four models and eight different cate-
gories, providing numerical support for the relevant ob-
servations in the insights. (corresponding to main pa-
per Figure 7). Additionally, for the Dynamic Degree di-
mension, intrinsic attributes of different categories nat-
urally result in noticeable differences in the dynamic
degrees among various categories. For instance, the
Human category consistently exhibits the highest dy-
namic degree across different models. Conversely, the
Architecture, Scenery, and Plant categories
consistently showcase the lowest dynamic degree across
various models, and the ascending order from low-
est to highest remains consistent as Architecture,
Scenery, and Plant. Due to this characteristic, the
dynamic degree shows significant variability across dif-
ferent categories. Therefore, we isolate it as a supple-
mentary dimension for additional analysis on top of other
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Figure A27. WebVid-10M Dataset Categorical Distribution.
We visualize the percentage of data amount of each of the eight
content categories in the WebVid-10M dataset.
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Figure A28. Aesthetic Quality for Eight Categories in WebVid-
10M dataset. We visualize the aesthetic score of each of the eight
content categories in the WebVid-10M dataset.

dimensions.
• In Figure A27, we show the statistical distribution of

data amount of each of the eight content categories in
the WebVid-10M dataset (supporting observations and
insights mentioned in the main paper Section 5).

• In Figure A28, we show the aesthetic scores of eight dif-
ferent categories within the WebVid-10M dataset (sup-
porting observations and insights mentioned in the main
paper Section 5).
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