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Summary
Background Digital whole-slide images are a unique way to assess the spatial context of the cancer microenvironment. 
Exploring these spatial characteristics will enable us to better identify cross-level molecular markers that could deepen 
our understanding of cancer biology and related patient outcomes. 

Methods We proposed a graph neural network approach that emphasises spatialisation of tumour tiles towards a 
comprehensive evaluation of predicting cross-level molecular profiles of genetic mutations, copy number alterations, 
and functional protein expressions from whole-slide images. We introduced a transformation strategy that converts 
whole-slide image scans into graph-structured data to address the spatial heterogeneity of colon cancer. We developed 
and assessed the performance of the model on The Cancer Genome Atlas colon adenocarcinoma (TCGA-COAD) and 
validated it on two external datasets (ie, The Cancer Genome Atlas rectum adenocarcinoma [TCGA-READ] and 
Clinical Proteomic Tumor Analysis Consortium colon adenocarcinoma [CPTAC-COAD]). We also predicted 
microsatellite instability and result interpretability.

Findings The model was developed on 459 colon tumour whole-slide images from TCGA-COAD, and externally 
validated on 165 rectum tumour whole-slide images from TCGA-READ and 161 colon tumour whole-slide images 
from CPTAC-COAD. For TCGA cohorts, our method accurately predicted the molecular classes of the gene mutations 
(area under the curve [AUCs] from 82·54 [95% CI 77·41–87·14] to 87·08 [83·28–90·82] on TCGA-COAD, and AUCs 
from 70·46 [61·37–79·61] to 81·80 [72·20–89·70] on TCGA-READ), along with genes with copy number alterations 
(AUCs from 81·98 [73·34–89·68] to 90·55 [86·02–94·89] on TCGA-COAD, and AUCs from 62·05 [48·94–73·46] to 
76·48 [64·78–86·71] on TCGA-READ), microsatellite instability (MSI) status classification (AUC 83·92 [77·41–87·59] 
on TCGA-COAD, and AUC 61·28 [53·28–67·93] on TCGA-READ), and protein expressions (AUCs from 85·57 
[81·16–89·44] to 89·64 [86·29–93·19] on TCGA-COAD, and AUCs from 51·77 [42·53–61·83] to 59·79 [50·79–68·57] 
on TCGA-READ). For the CPTAC-COAD cohort, our model predicted a panel of gene mutations with AUC values 
from 63·74 (95% CI 52·92–75·37) to 82·90 (73·69–90·71), genes with copy number alterations with AUC values 
from 62·39 (51·37–73·76) to 86·08 (79·67–91·74), and MSI status prediction with AUC value of 73·15 (63·21–83·13).

Interpretation We showed that spatially connected graph models enable molecular profile predictions in colon cancer 
and are generalised to rectum cancer. After further validation, our method could be used to infer the prognostic value 
of multiscale molecular biomarkers and identify targeted therapies for patients with colon cancer.
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1763523, DOD-ARO ACC-W911NF, and NSF OIA-2040638 to Dimitri N Metaxas.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction
Colon cancer is the third most common cancer worldwide 
and accounted for 10% of all new detected cancers and 
approximately 9·4% of all cancer deaths in 2020.1 The 
disease can be triggered by histopathological changes 
associated with key molecular variations, such as genetic 
mutations, copy number alterations, and protein 
expressions.2 TP53 and KRAS mutations are known to 
drive colon cancer progression with a strong association 
with therapy resistance.2 Microsatellite instability is also 
a key prognostic marker and is characterised by a 
defective DNA mismatch repair system.3 In addition, the 

advent of high-quality proteomic profiles has identified 
functional cellular markers that cannot be reliably 
captured through genomic analysis.3,4 Proteomics 
analysis could therefore extend the landscape of cancer 
genomics for differential biomarker discovery.4 Together 
these multiscale molecular profiles could provide a more 
comprehensive view of cancer evolution to enable better 
patient staging, prognostication, and targeted therapy.2

Multilevel molecular characteristics are known to 
exhibit spatial differences in the tumoural micro
environment.5 Molecularly different, spatially intertwined 
regions within a tumour can have individual mutational 
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outcomes, indicating the existence of intratumoural 
heterogeneity.5 This spatial heterogeneity fully explains 
the diverse distribution of tumoural molecular subpopu
lations, which reflect a tumour’s differential sensitivity to 
treatment.6 To date, the major evidence of spatial 
heterogeneity comes from transcriptional and genetic 
profiles through the use of physically isolated biopsies on 
a single tumour. To discern such molecular variations, 
high-resolution whole-slide imaging is a unique way to 
assess the spatial context of the entire tumoural micro
environment (eg, cancer cells and their surrounding 
tissues) and tissue interactions. Identification of these 
histopathological patterns that are sensitive to underlying 
molecular mechanisms is crucial to improve our 
biological understanding and make more informed 
diagnoses. Nevertheless, quantitative whole-slide 
imaging that integrates regional and spatial contexts has 
not been investigated in depth in relation to cancer 
molecular signatures.

The recent development in image-genome studies has 
redefined the role of pathological imaging, with its 
capacity to characterise mutational outcomes across lung 
cancer,7 liver cancer,8 breast cancer,6 and colon cancer,9 
among others.10,11 This new approach is driven by our 
evolving ability to explore multilevel molecular profiles, 
such as key mutations, DNA-level copy number 
alterations, and functional proteomic data. Meanwhile, 
given the complex characteristics of tumour appearance, 

we need a way to automatically discover the discrim
inating imaging features. Deep-learning methods such 
as convolutional neural networks have been shown to be 
effective for image-based feature discovery; however, 
these methods are unable to directly characterise the 
underlying spatial information of tumoural subregions 
and their interactions. Considering the tumour micro
environment and its strong regional differences of image 
contents, we hypothesised that the differences between 
image tiles are key to understanding the status of 
molecular outcomes. Our primary objective is therefore 
to develop a tile-based graph analysis that could discover 
differential spatial characteristics from slides to help 
assess molecular variation, and potentially help predict 
clinical outcomes and targeted therapy for patients with 
colon cancer. 

Methods
Study design
In this retrospective multicentre cohort study, we 
developed a spatially aware graph neural network model 
to predict the cross-level molecular profiles of genetic 
mutations, copy number alterations, and functional 
protein expressions from whole-slide images (appendix 
p 21). We designed an image-to-graph transformation 
that converts entire whole-slide images into a spatially 
connected graph representation, where the spatial 
connections of tumour tiles are uniquely built by use of 

Research in context

Evidence before this study
We searched Google Scholar and PubMed without language 
restrictions using the search terms “genetic mutation”, “copy 
number alteration”, “microsatellite instability”, “protein 
expression”, ‘deep learning”, “graph convolutional networks”, 
“biomarkers”, and “colon cancer” before doing this study. 
We analysed nearly 60 conference and journal articles published 
between Jan 1, 2018, and March 21, 2022. Previous deep-
learning studies have shown their prediction capability for 
microsatellite instability and genetic driver mutations directly 
from histopathological images on colon cancer. However, these 
studies all analysed the image tiles separately, ignoring the 
importance of spatial association among tiles. In addition, 
existing studies seldom address cross-scale molecular profiles in 
colon cancer and seldom evaluate performance across cancer 
types and image formats. Although deep learning models have 
been increasingly made use of, existing publications have not 
assessed the spatial features of histopathological tiles in depth 
towards molecular profile prediction, which could have 
prognostic value.

Added value of this study
Tumour microenvironments have strong regional differences in 
image contents, so we hypothesised that the interactions 
between image tiles are key to understanding molecular 
outcomes. In this study, we present a graph neural network 

framework that allows the identification of multiregion spatial 
connection between tiles to predict cross-scale molecular 
profile status in colon cancer. We showed the validity of 
spatially connecting tumour tiles by use of the geometric 
coordinates from raw whole-slide images. We visualised the 
image tiles and measured the topological structure of tile-
connected graphs. The findings expanded our understanding of 
histopathological characteristics with links to a large panel of 
cross-scale molecular profiles from genetic mutations and copy 
number alterations, to functional protein expressions of 
treatment relevance.

Implications of all the available evidence
The proposed graph neural network model is a unique way to 
characterise the spatial heterogeneity of the colon cancer 
microenvironment and has the potential to uncover widespread 
correlations between imaging and molecular data which can 
affect treatment decisions and patient prognosis and could 
improve management of colon cancer. The proposed graph 
neural network models can potentially identify multiscale 
molecular biomarkers for people with colon cancer, meaning 
that pathologists could be faster at treatment decision making, 
and people with colon cancer might avoid the need for 
molecular analysis of gene sequencing. Furthermore, the graph-
based model in this study could be applied to other diseases.

See Online for appendix
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the geometric coordinates from the raw whole-slide 
images. Next, our graph neural network model 
architecture consists of five main modules (appendix 
pp 4–5), including a graph-based feature extractor, 
jumping knowledge structure, graph-level READOUT 
operation, multilayer perceptron classifier, and model 
ensemble strategy. We trained the proposed model on 
The Cancer Genome Atlas colon adenocarcinoma 
(TCGA-COAD); TCGA-COAD was jointly developed, 
beginning in 2006, by the National Cancer Institution 
(NCI) and the National Human Genome Research 
Institute to predict the molecular outcome probabilities 
of the corresponding whole-slide images. For each 
subgraph model input, the input is a group of constructed 
spatially connected subgraphs that is generated from 
each whole-slide image. The model was externally 
validated on The Cancer Genome Atlas rectum adeno
carcinoma (TCGA-READ) and Clinical Proteomic Tumor 
Analysis Consortium colon adenocarcinoma (CPTAC-
COAD) cohorts from NCI. Furthermore, scarcity of 
model understanding and results interpretation have 
been a concern for the widespread use of deep learning 
in medical research. Our graph network model employs 
a global sort-pooling mechanism (appendix pp 6–7) to 
provide possible model prediction interpretations. Full 
details of data preprocessing, tile selection, model 
structure development, and prediction interpretation are 
in the appendix (pp 2–6). We also did ablation studies 
(appendix pp 7–9) to evaluate our method design 
strategies (eg, the number of nodes in the graph, the 
distance threshold for graph edge construction, subgraph 
ensemble strategy, the graph convolutional layer 
selection, and the layer aggregation strategy) and to 
analyse the performance of our approach compared with 
baseline methods, including convolutional neural 
network-based methods (eg, ResNet-based model). 

Multi-cohort data selection
The TCGA-COAD and the TCGA-READ datasets12 contain 
459 formalin-fixed paraffin-embedded (FFPE) stained 
histopathology whole-slide images of colon tumours and 
165 whole-slide images of rectum tumours. The CPTAC-
COAD dataset contains 161 fresh-frozen whole-slide 
images of colon cancer tumours.13 TCGA-READ and 
CPTAC-COAD served as the external validation datasets, 
enabling us to evaluate model generalisability to a 
different cancer without using transfer learning (TCGA-
READ) and a different format of whole image slides 
(CPTAC-COAD). There are no overlapping patients 
between the CPTAC-COAD and TCGA-COAD datasets. 
The patient characteristics of the colon and rectum 
datasets are shown in the appendix (p 20). We identified 
the associated colorectal genetic mutational profiles and 
microsatellite instability status from Cbioportal.14 We also 
collected protein-expression profiles based on the reported 
clinical relevance of colon cancer and rectum cancer from 
The Cancer Proteome Atlas (appendix p 17).3,4 The 

signature of functional protein expression can be used to 
identify cancer progression, metastasis, and appropriate 
treatments, which are not faithfully reflected by genetic 
alterations.3,4 Compared to genetic changes, protein-level 
activities are functional and closely associated with cellular 
biology and drug development. We provide a detailed 
description of molecular profiles and the label 
identification in the appendix (pp 1–2).

We selected whole-slide image slides according to the 
following criteria: (1) the slide has no blurred areas or 
abnormally stained tissue areas; (2) the slide has sufficient 
and visible tumour regions; and (3) one slide per patient 
comes with available information on gene mutation, copy 
number alteration (eg, amplifications and deletions), 
microsatellite instability, and proteomics. After pre
processing, we included 306 patients with 40× magni
fication (0·25 microns per pixel [mmp]) in TCGA-COAD. 
We selected the slide in 0·25 mpp due to its higher 
resolution than others. The same selection criteria were 
applied to the validation cohorts TCGA-READ and 
CPTAC-COAD. We included 123 patients with whole-
slide image slides and associated molecular information 
for TCGA-READ, and 94 for CPTAC-COAD. For micro
satellite instability status classification, after preprocessing 
for graph construction, we included 288 slides in TCGA-
COAD, 112 slides in TCGA-READ, and 94 slides in 
CPTAC-COAD with the available microsatellite instability 
records. For the proteomics analysis, we obtained ​​high-
quality proteomic profiles generated by the antibody-
based technique of reverse phase protein array (RPPA) 
from The Cancer Proteome Atlas (TCPA) database,3 
where TCPA used a replicate-based normalisation 
method to combine RPPA data from different slides. 
CPTAC-COAD was not included in this analysis as the 
protein data were not available on TCPA. After whole-
slide image preprocessing (eg, tile extraction and 
tumoural tile selection) and graph construction (appendix 
pp 1–7), 670 901 tiles were made use of for evaluation on 
colon cancer and 225 146 tiles for validation on rectum 
cancer. We used Python for computational analysis, 
including model implementation, training, and 
evaluation. We evaluated the performance of our model 
by use of area under the curve (AUC) prediction scores, 
their 95% CIs, and student t test p values.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or in 
the submission or writing of the report.

Results 
Our model had high-level performance for predicting 
multiple genetic mutations in the training dataset 
(figure 1A and 1D; appendix pp 11–12). In particular, we 
found that KRAS mutation (AUC 80·16, 95% CI 
75·83–83·93) is well predicted by our approach (appendix 
pp 11–12). The model also had a good prediction 

For Cbioportal see https://www.
cbioportal.org

https://www.cbioportal.org
https://www.cbioportal.org
https://www.cbioportal.org
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performance for TP53 (appendix pp 11–12) mutation 
(AUC 81·68, 95% CI 77·94–85·50). Our method 
outperformed a previous study11,15 on a series of mutated 
genes (appendix pp 7–9).

Copy number alterations are a somatic change that 
causes the gain or loss of DNA fragments and are often 
associated with different cancers.16,17 Following the same 
training process (figure 1B and 1D; appendix pp 13–14), 

Figure 1: Molecular profile prediction results 
The graph neural network-based model was trained to predict the molecular profile outcomes (eg, gene mutation, copy number alterations, and protein expression) on TCGA-COAD and validated on 
TCGA-READ. For each molecular profile, we show AUC values with student t test p value for the prediction scores (α=0·05). (A–C) Prediction results with 95% CI in TCGA-COAD. (D–F) Prediction results 
and p values in TCGA-COAD. (G–I) Prediction results with 95% CI in the TCGA-READ cohort. (J–L) Prediction results and p values in TCGA-READ. AUC=area under curve. CNA=copy number alteration. 
TCGA-COAD=The Cancer Genome Atlas colon adenocarcinoma. TCGA-READ=The Cancer Genome Atlas rectum adenocarcinoma.
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our model performed strongly (all AUCs >85·00) in 
predicting ten copy number alterations genes in colon 
cancer. For instance, both POFUT1 (AUC 87·99, 95% CI 
77·31–92·24) and PLAG2 (AUC 90·55, 86·02–94·89) 
were highly predictive from our findings. 

Our model also performed well for a comprehensive 
panel of key functional protein-expression labels in colon 
cancer (figure 1C and 1F; appendix pp 15–16). For 
instance, PTEN expression is predictable in our study 
(AUC 86·01, 95% CI 81·97–90·06), which represents a 
unique protein marker for predicting a patient’s response 
to treatment with cetuximab.18 The prediction result of 
HER3 expression (AUC 85·59, 81·39–89·48) is 
encouraging, since it is viewed as a determinant for poor 
prognosis of colon cancer.19

To assess the cross-cancer generalisability of the model, 
we externally validated it on TCGA-READ. Our model 
again accurately predicted multiple genetic mutations 
(figure 1G and 1J; appendix pp 11–12). For instance, our 
model could predict incidence of KRAS mutation 
(appendix pp 11–12) on rectum cancer (AUC 71·02, 95% 
CI 63·16–77·67), which is made use of to predict patient 
non-response to anti-EGFR target therapy (cetuximab 
and panitumumab).20,21 Our model also achieved a high 
prediction performance for ZFHX4 (AUC 81·80, 
72·20–89·70), which is associated with poor prognosis of 
patients. Additionally, we found potential predictive 
variables of clinical relevance on the status of copy 
number alterations in rectum cancer (figure 1H and 1K; 
appendix pp 13–14).2 Our model achieved a good 
prediction performance for CSMD1 (76·48, 64·78–86·71). 
Finally, we reported the performance of protein-
expression prediction results (eg, ERALPHA 57·16, 
47·54–66·46; figure 1I and 1L; appendix pp 15–16). 

Our model was trained on images of FFPE slides, and 
so to further validate the model’s potential generalisation, 
we tested it on CPTAC-COAD, which included fresh-
frozen slides. We recognise useful findings on CPTAC-
COAD to inform the model usefulness. For example, the 
model could predict the DNAH5 (appendix p 18) 
mutation (AUC 76·16, 95% CI 67·11–83·55), which is 
highly associated with poor prognosis in colon cancer.22 
We also predicted the FLG (appendix p 18) mutation 
(AUC 73·45, 63·26–83·25), which is associated with loss 
of barrier function and deregulation of immune 
response.23

Our approach had good performance for microsatellite 
instability status classification in colon cancer 
(AUC 83·92, 95% CI 77·42–87·59). Performance is lower 
in rectum cancer (AUC 61·28, 53·28–67·93), probably 
due to the inherent image differences between cancers. 
We show that our microsatellite instability prediction 
was better (AUC 73·15, 63·21–83·13) on the CPTAC-
COAD cohort despite the slide format variance. Our 
findings reiterate supportive evidence that predictive 
signals of microsatellite instability outcomes were 
available.9 

Despite the inherent differences between cancer types 
and image formats, we achieved a set of repeatable 
findings. We achieved positive gene mutation and copy 
number alteration gene prediction results, such as 
ZFHX4 (TCGA-COAD AUC 83·17, 95% CI 78·00–87·98; 

Figure 2: TP53 mutation prediction on TCGA-COAD
(A) Original whole-slide imaging with TP53 mutation outcome. (B) Highlighted regions marked by the five 
subgraph models within the whole-slide imaging. Different colours represent different key tile regions from 
subgraph models (there are two purple boxes as the titles identified by model one are spatially distributed and all 
regions of interest are marked). (C–G) The zoomed-in view of the identified top ten tiles from five subgraph 
models, which are ranked by their importance score in a decreasing order. Gross necrosis is common in tiles from 
model two and model three, and is rare in tiles from model one, model four, and model five. In addition, single cell 
necrosis is common in tiles from model one and is rare in tiles from model five. (H) Average statistical results of the 
graph measurements among five subgraphs. TCGA-COAD=The Cancer Genome Atlas colon adenocarcinoma.

A

C Top ten identified tiles from subgraph model one (within purple region)

B

D Top ten identified tiles from subgraph model two (within red region) 

E Top ten identified tiles from subgraph model three (within blue region) 

F Top ten identified tiles from subgraph model four (within green region) 

G

H

Top ten identified tiles from subgraph model five (within yellow region)

Statistics of 
subgraphs

Number of 
nodes

Node degree Clustering 
coefficient

Closeness 
centrality

Betweenness 
centrality

1000 688·5485 0·8610 0·7505 0·0004
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TCGA-READ AUC 81·80, 72·20–89·70) and CSMD1 
(TCGA-COAD AUC 79·86, 73·08–85·67; TCGA-READ 
AUC 76·48, 64·78–86·71; appendix pp 11–16, 18). 
Additional results include DNAH11 (TCGA-COAD AUC 
82·42, 77·16–87·75; CPTAC-COAD AUC 82·01, 
74·16–88·82) and CCSER1 (TCGA-COAD AUC 81·90, 

77·16–86·54; CPTAC-COAD AUC 78·50, 67·87–87·34). 
Two molecular profiles could even be predicted better 
using our model on CPTAC-COAD than on TCGA-
COAD, such as CSMD3 (TCGA-COAD AUC 82·17, 
77·82–86·57; CPTAC-COAD AUC 82·90, 73·69–90·71) 
and FOXS1 (TCGA-COAD AUC 79·83, 73·18–88·14; 
CPTAC-COAD AUC 86·08, 79·67–91·74).

For interpretability, we display the top ten tiles with the 
highest contribution to the prediction based on the entire 
graph representation from each subgraph model 
(figures 2–4). We illustrated the result of TP53 mutation 
by the ensemble prediction from five subgraph models, 
which are separately trained by tile subgraphs generated 
from the entire whole-slide image (figure 2). 

Identified from each subgraph model, these top image 
tiles tend to be spatially distributed across the whole-
slide image. Such a spatial characterisation is important 
to assess the molecular status in whole-slide images 
using the sort-pooling mechanism (appendix pp 7–8). 
The graph structure with a higher node degree and 
closeness centrality value (figures 3H and 4H) than the 
average graph statistics from across the samples 
(appendix p 19) is also informative as it yields accurate 
prediction for PLAGL2 copy number alteration (figure 3) 
and PTEN protein expression (figure 4).

In our ablation analyses (appendix pp 7–9), we 
evaluated our method design, parameter selection, and 
model performance by replacing various architectures, 
parameters, and models in our study. We found that our 
subgraph ensemble strategy had the best performance 
across various molecular profile predictions (appendix 
p 34). Furthermore, our max-pooling layer aggregation in 
the READOUT layer could have stable performance 
across multiple tasks. For the graph construction strategy, 
the number of nodes (eg, 1000) and the distance 
threshold (512 × 85) could construct the proper graph 
structure for molecular profile prediction. Our study 
demonstrates competitive performance for individual 
gene mutations (appendix p 19); for example, our method 
consistently outperforms the previous studies on KRAS, 
TP53, APC, TTN, PIK3CA, and FBXW7 (average AUC of 
77·17). Meanwhile, our results were slightly lower than 
the previous study11,15 in microsatellite instability versus 
stability.

Discussion
We proposed a graph neural network approach to explore 
spatial information via the differences between tumoural 
tiles of whole-slide images. The presence of spatial and 
topological structures in histopathology is well docu
mented but seldomly explored in the context of quan
titative cancer imaging and machine learning.24 Our study 
emphasises the use of spatial context to construct tile-
connected graphs to represent histopathological slides 
without explicit tile annotation, which offers an efficient 
way to address intratumour spatial heterogeneity—
crucial to our understanding of patient outcomes in colon 

Figure 3: PLAGL2 copy number alterations prediction on TCGA-COAD 
(A) Original whole-slide imaging with PLAGL2 copy number alterations. (B) Highlighted regions marked by the five 
subgraph models within the whole-slide imaging. Different colours represent different key tile regions from 
subgraph models. (C–G) The zoomed-in view of the identified top ten tiles from five subgraph models, which are 
ranked by their importance score in a decreasing order. Tiles from models two, three, and four almost do not 
contain lymphocytes, and tiles from models two and three include rare apoptotic cells. Furthermore, about 40% of 
the tiles from model one contain single cell necrosis. (H) Average statistical results of the graph measurements 
among five subgraphs. TCGA-COAD=The Cancer Genome Atlas colon adenocarcinoma.

A

C Top ten identified tiles from subgraph model one (within purple region)

B

D Top ten identified tiles from subgraph model two (within red region) 

E Top ten identified tiles from subgraph model three (within blue region) 

F Top ten identified tiles from subgraph model four (within green region) 

G

H

Top ten identified tiles from subgraph model five (within yellow region)

Statistics of 
subgraphs

Number of 
nodes

Node degree Clustering 
coefficient

Closeness 
centrality

Betweenness 
centrality

1000 915·4283 0·9400 0·9177 0·0001
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cancer.5 In particular, our findings showed that a broad 
range of molecular-histopathological associations were 
predicted and may have prognostic value (eg, KRAS and 
TP53 mutations), help assess cell progression (eg, 
PLAGL2 and POFUT1 copy number alterations), and 
identify targeted therapies (eg, EGFR expression) in colon 
cancer.

The rapid growth of whole-slide histopathology 
promises to uncover more meaningful genome-imaging 
associations via data integration.9 Our analysis empha
sises a synergistic approach in prediction and under
standing of colon cancer based on molecular profiles in 
mutation, copy number alteration, and functional 
proteomics. In particular, proteomics exemplifies an 
emerging field to extend our understanding of genomic 
signatures, which permits the direct discovery of 
diagnostic biomarkers from a cellular cancer perspective.25 
Protein dynamics represent their own biological and 
cellular traits that complement roles of mRNA 
expression.3,4 However, predictive analytics of proteomics 
profiles and their associations with other molecular 
signatures have not been explicitly researched in 
histopathology. In our study, we had good predictions on 
both TP53 gene-mutation prediction (AUC 81·68, 95% CI 
77·94–85·50) and P53 protein-expression prediction 
(AUC 86·41, 82·44–90·19). From the perspective of 
cancer evolution, these findings reinforce our under
standing that the well known TP53 mutation could drive 
the development of colon cancer with missense mutations 
frequently leading to the accumulation of abnormal P53 
expression.26 In addition, we identified that the 
expressions of NOTCH1 and copy number alterations of 
POFUT1 and PLAGL2 can be predicted because of their 
biological relationship.27 Due to the challenge of cross-
cancer validation, we acknowledge that the performance 
on the external validation set (eg, TCGA-READ and 
CPTAC-COAD) is reduced compared with internal 
validation (eg, TCGA-COAD). Our study also had a good 
prediction of the functional protein BRAF (AUC 85·84, 
95% CI 81·68–90·03) and EGFR_pY1173 protein 
(AUC 89·64, 86·29–93·19), both of which are part of the 
EGFR-MAPK pathway, which reflects the robustness of 
our study as this pathway has known cancer associations. 
Therefore, our study makes it possible to observe cross-
scale molecular activities via histopathology that were not 
reported in previous studies. Also, diagnosis and therapy 
differ considerably between colon and rectum cancers, 
and our results offer helpful evidence that key mutational 
outcomes (eg, ZFHX4 AUC >80% and RYR1 AUC >77% 
on both cancers) can be predicted, which enhances the 
potential clinical utility of our approach. 

The image-to-graph transformation in our study allows 
analysis of tumoural spatial heterogeneity, as seen in 
histopathology. Our contributions include spatial 
distance definition, image-tile graph construction and 
labelling, and topological interpretation of spatial 
characteristics. Driven by the observation that spatial 

heterogeneity is present within and across tumoural 
tiles in the entire cancer microenvironment, the 
proposed spatial distance builds upon tiles’ physical 
geometric coordinates to objectively capture tumoural 
regional differences. In addition, our tile-based graph 
representation enables whole-slide-level predictions, 

Figure 4: PTEN protein-expression prediction on TCGA-COAD
(A) Original whole-slide imaging with PTEN protein. (B) Highlighted regions marked by the five subgraph models 
within the whole-slide imaging. Different colours represent different key tile regions from subgraph models. 
(C–G) The zoomed-in view of the identified top ten tiles from five subgraph models, which are ranked by their 
importance score in a decreasing order. Tiles from models 1–5 include mucinous tumour cells with background 
fibrosis. Clinically significant surrounding lymphocytes are included in models two, three, and four. Furthermore, 
single cell necrosis is visible in model five. (H) Average statistical results of the graph measurements among 
five subgraphs. TCGA-COAD=The Cancer Genome Atlas colon adenocarcinoma.

A

C Top ten identified tiles from subgraph model one (within purple region)

B

D Top ten identified tiles from subgraph model two (within red region) 

E Top ten identified tiles from subgraph model three (within blue region) 

F Top ten identified tiles from subgraph model four (within green region) 

G

H

Top ten identified tiles from subgraph model five (within yellow region)

Statistics of 
subgraphs

Number of 
nodes

Node degree Clustering 
coefficient

Closeness 
centrality

Betweenness 
centrality

1000 759·7134 0·8750 0·7968 0·0003
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avoiding the uncertainty of tile label assignment for a 
particular molecular outcome. Such tile-based graphs do 
not involve extra preprocessing like nuclei or tissue 
segmentation, which probably brings unfavourable 
performance variance.15 Assessing the full repertoire of 
multisized tiles is not practical, given the excessive 
combinations of tiles required; therefore we focused on 
maximising the information gathered through efficient 
tile samplings. To accurately show tile distribution, 
whole-slide tile sampling creates an unbiased space that 
allows for subgraph construction from the divided 
tumoural tiles, which enhances model generalisation 
and maintains a reasonable trade-off between efficiency 
and accuracy (appendix pp 4–5). We also provided a 
graph structure interpretation scheme (appendix pp 6–7) 
to quantitatively reveal the spatial differences between 
image tiles. Finally, our graph approach is purely data 
driven on the aggregated tumour tiles and does not rely 
on conventional morphological patterns that have been 
routinely assessed by pathologists. Consequently, the 
model could serve as an augmentation tool to diagnose 
suspicious malignancies and locate differential regions 
via identified tumoural tiles in histopathology.

The multigenic complexity of colon cancer is a 
challenge for understanding of the disease’s underlying 
mechanisms, which makes a macroscopic approach of 
histopathology via powerful graph networks appealing. 
The strength of our graph network approach is its ability 
to explore the relational information among complex 
graph entities, which is beyond the scope of standard 
convolutional approaches.28 Our analysis provides a 
comprehensive histopathological representation by 
extracting local (ie, within tile) and topological (ie, among 
tiles) information simultaneously, enabling a direct 
correlation measurement among regional tissues via 
importance ranking (appendix pp 1–7). The multi
parameter evaluation further reveals the stability of the 
proposed shallow graph neural networks (appendix p 21) 
across multiple prediction tasks. However, we 
acknowledge that there is a substantial absence of 
consensus guidelines on the definition and utility for 
tumoural image-based tiles. To address this challenge 
and enable detailed distribution analysis, we adopted 
random down-sampling with replacement to ensure that 
enough tiles were selected for subgraph model 
development.29 Our ensemble strategy shows a simple 
yet effective way to merge the dynamics of tiles by 
aggregating prediction results between different tile-
connected subgraph models. 

Limitations 
Although exploring the potential relationship between 
histopathology and molecular profiles is promising, 
further multisite clinical validation of our model is 
necessary to increase translational potential in the clinic 
and assist pathologists in the identification of molecular 
signatures in colon cancer and management of other 

cancers. Emerging techniques in spatial transcriptomics 
might provide highly defined annotations to locate fine-
grained histopathological regions and further enhance 
deep-learning performance.10 We recognise that the 
mutation imbalance (ie, the mutational rate for a particular 
gene across cancer types) of molecular profiles is 
commonly seen across cancers, making the training 
samples insufficient to optimise model development. For 
example, copy number alteration genes such as TM9SF4, 
TPX2, TSPY26P, and WWOX only have about 7·69% 
mutation ratio in the TCGA-COAD cohort, despite them 
having meaningful clinical relevance in colon molecular 
pathology.30 We recognise that data format differences of 
histopathology can affect model robustness for certain 
mutational outcome predictions. Developing data-efficient 
models is therefore of interest to obtain reproducible 
findings in different image cohorts. Extending our graph 
analysis into the pan-cancer setting by assessing model 
consistency across cancer types would also be meaningful. 
Our slide inclusion criteria maintained a high quality of 
samples for model training; however, this stringency 
means that our approach might be too sensitive to slides 
with small artifacts. Considering the scarcity of data, we 
have not analysed the joint molecular activity prediction 
that could give knowledge about measuring complex 
image–genome relationships. The landscape of molecular, 
pathological, and predictive studies of cancer is changing 
rapidly, and the continued investigation of modelling 
imbalanced characteristics of molecular classes will be 
crucial to uncover additional insights into genome–
pathology associations in cancer. Our findings show that 
exploration of the spatial characteristics of whole-slide 
images can well predict the cross-level molecular outcomes 
of patients with colon cancer. 
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