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Abstract

Protein side chains are vitally important to many biological processes such as protein–protein interaction. In this study, we evaluate
the performance of our previous released side-chain modeling method OPUS-Mut, together with some other methods, on three
oligomer datasets, CASP14 (11), CAMEO-Homo (65) and CAMEO-Hetero (21). The results show that OPUS-Mut outperforms other
methods measured by all residues or by the interfacial residues. We also demonstrate our method on evaluating protein–protein
docking pose on a dataset Oligomer-Dock (75) created using the top 10 predictions from ZDOCK 3.0.2. Our scoring function correctly
identifies the native pose as the top-1 in 45 out of 75 targets. Different from traditional scoring functions, our method is based on the
overall side-chain packing favorableness in accordance with the local packing environment. It emphasizes the significance of side
chains and provides a new and effective scoring term for studying protein–protein interaction.
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Introduction
Protein–protein interaction is essential for many bio-
logical systems, and it is also important in designing
peptidic drugs [1]. Many protein–protein interactions are
mediated by amino-acid side chains, especially those of
the interfacial residues [2]. Previous studies show that
accurate modeling of side-chain conformations at the
interface is necessary for high-resolution protein–protein
docking [3] and protein–ligand docking [4]. Improving the
side-chain modeling accuracy will generate more native-
like distributions of intra-molecular and inter-molecular
residue energies, which is beneficial to the protein dock-
ing task [3].

In recent years, many successful backbone-dependent
side-chain modeling methods have been proposed [5–17].
The sampling-based methods select the rotamers from
the rotamer library according to their search schemes
and keep the best rotamer for each residue with the mini-
mal score depending on their scoring functions. This kind
of methods run fast, and they are suitable for the repeat-
edly applied side-chain modeling in the folding process,
examples include SCWRL4 [14] and FASPR [16]. However,
the performance is limited by the discrete rotamers in the
rotamer library and the accuracy of the scoring function
[6]. With the help of deep learning techniques, some
new methods have been developed, which successfully
capture the local environment of each residue using
3DCNN network and improve the accuracy of side-chain

modeling by a large degree. Examples include DLPacker
[7] and OPUS-Mut [17].

Scoring protein–protein docking poses is another
important task in studying protein–protein interaction.
Various criteria [18] have been proposed, such as force-
field-based criteria [19, 20], knowledge-based criteria
[21, 22] and machine learning-based criteria [23–26].
For example, ZRANK utilizes a scoring function that
includes van der Waals energies, electrostatics energies
and desolvation energy [20]. GNN-DOVE is a recently
developed graph neural network-based docking decoy
evaluation score that can distinguish the near-native
models from those incorrect decoys [25]. It is a binary
classification model that is trained on the datasets that
contains both near-native and incorrect decoys. Since the
side chains of the residues, especially those located at
the interface, are crucial for protein–protein interaction,
a scoring term that is mainly based on side chains may be
an effective term for better scoring the protein–protein
docking poses.

In this paper, we use the structures of oligomers to
study protein–protein interaction. We evaluate the side-
chain modeling performance of our previous released
method OPUS-Mut [17], along with some other methods,
on three oligomer datasets collected in this study,
CASP14 (11), CAMEO-Homo (65) and CAMEO-Hetero (21).
The results show that OPUS-Mut outperforms other
methods measured by all residues, or by the interfacial
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residues. To evaluate the performance of OPUS-Mut
in scoring protein–protein docking poses, we create a
protein–protein docking pose dataset Oligomer-Dock (75)
using the top 10 predictions from ZDOCK 3.0.2 [27].
The results show that our scoring function OPUS-Mut
(Sall) correctly identifies the native pose as the top-1
in 45 out of 75 targets, and ranks native pose among
top-3 poses in 67 out of 75 targets. This indicates the
effectiveness of using the overall side-chain packing
favorableness in accordance with the local packing
environment to evaluate different docking poses. In
addition, we verify the performance of OPUS-Mut in
studying protein mutation on an oligomeric target, SARS-
CoV-2 NSP7–NSP8 complex. The results suggest that the
usage of OPUS-Mut in studying protein mutation may be
generalized to oligomeric complexes.

Methods
Datasets
Three oligomer datasets are collected in this study:
CASP14 (11) contains 11 oligomers downloaded from the
CASP14 website (https://predictioncenter.org/download_
area/CASP14/targets), CAMEO-Homo (65) and CAMEO-
Hetero (21) contain 65 homo-oligomers and 21 hetero-
oligomers, labeled by the CAMEO website [28] released
between November 2021 and February 2022, respectively.
Note the oligomers with over 3000 residues in length have
been excluded from the datasets because of the limi-
tation of Graphics Processing Unit (GPU) memory. The
experimental resolutions of targets in the test sets are
<3.2 Å except one in CAMEO-Homo (65) [7E1B (4.6 Å)]
and one in CAMEO-Hetero (21) [7B26 (3.4 Å)]. In summary,
there are 63 252 residues and 18 383 interfacial residues
(exclude Ala and Gly). For further evaluation, another
oligomer dataset (CAMEO93o) is also included, which
contains 93 oligomer targets (64 468 residues and 16 591
interfacial residues [exclude Ala and Gly)] that released
between April 2022 and July 2022 from the CAMEO
website.

A protein–protein docking pose dataset Oligomer-Dock
(75) is created in this study. Among all 97 oligomers from
three oligomer datasets, we exclude the oligomers with
> 4 peptide chains, and retain 75 oligomers. For each
oligomer, we use the top 10 poses generated by ZDOCK
3.0.2 [27] as its decoys. In the calculation of ZDOCK 3.0.2,
for each oligomer, the last peptide chain in the Protein
Data Bank (PDB) file is defined as ‘ligand’, the remaining
peptide chains are defined as ‘receptor’.

OPUS-Mut
OPUS-Mut is a backbone-dependent side-chain modeling
method that was released by us recently [17]. It is mainly
based on OPUS-Rota4 [6], but with some improvements.
The method was shown to outperform some other
methods, measured by all residues or by core residues
only, on the targets with single peptide chain. In our
previous study [17], we use OPUS-Mut to study protein

mutation. Briefly speaking, as shown in lower green
panel in Figure 1, by comparing the differences between
its predicted unmutated (wild-type) side chains and its
predicted mutated side chains, we can infer the extent of
structural perturbation and the affected residues from
those side chains significantly shifted upon the muta-
tion. Also, from the extent of side-chain structural pertur-
bation, we can infer the minimally disturbing mutation,
from which we may construct a protein with relatively
low sequence homology but with similar structure with
respect to the wild type. From the affected residues,
we may also use them to infer the possible functional
changes if the functions are related to certain residues.

To predict the four dihedral angles of each residue,
OPUS-Mut contains eight regression nodes. For each
dihedral angle χ , it delivers two predictions for sin

(
χ

)

and cos
(
χ

)
, respectively. Meanwhile, besides outputting

the predicted side chain conformation, OPUS-Mut also
outputs the predicted Root Mean Square Deviation
(pRMSD) for its side-chain prediction (upper green panel
in Figure 1). To this end, a classification node is used
to learn the RMSD between the predicted side chain
and its native counterpart for each residue. The pRMSD
ranges from 0 to 1, and is segmented into 20 bins.
The Mean Squared Error loss is used for training eight
regression nodes, and the cross-entropy loss is used
for training the classification node. In addition, OPUS-
Mut adopts a 3DCNN module [7] to capture the local
environment for each residue, therefore it can respond
to the change of local environment with high sensitivity.
More details of the framework of OPUS-Mut can be found
in Supplementary Figure S1.

For the residue with lower pRMSD value, OPUS-Mut
predicts its side chain with a higher confidence in accor-
dance with its local environment. In this study, we use the
summation of pRMSD as an indicator to gauge the overall
side-chain packing favorableness in a protein structure
i.e. likeliness of its local packing environment to the
native packing environment. In studying docking pose,
we name the summation of pRMSD over all residues as
Sall, the summation over interfacial residues as Sinterface

and the summation over other residues as Sother

In our pervious study, for the targets with single
peptide chain, we have demonstrated that OPUS-Mut
outperforms some other backbone-dependent side-chain
modeling methods, measured by all residues or by core
residues only. In this study, we evaluate the performance
of OPUS-Mut and some other backbone-dependent
side-chain modeling methods on oligomeric targets.
For comparison, we also use OPUS-Mut to model each
peptide chain separately i.e. to model the conformation
of side chains without considering the effects of other
peptide chains. We name this single-chain approach as
OPUS-Mut-s.

Data availability
The code and pre-trained models of OPUS-Mut and
the four datasets used in this paper can be found at
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Figure 1. Two applications of backbone-dependent side-chain modeling method OPUS-Mut. The applications of OPUS-Mut in studying protein mutation
on the target with single peptide chain (lower green panel) have been evaluated in our previous work. In this paper, we focus on its application in
studying protein–protein interaction (upper green panel), and its application in studying protein mutation on oligomeric complexes.

http://github.com/OPUS-MaLab/opus_mut. They are
freely available for academic usage only.

Results
Performance on side-chain modeling on
oligomeric targets
We compare the side-chain modeling performance of
OPUS-Mut with that of SCWRL4 [14], OSCAR-star [15]
and DLPacker [7] on three oligomer datasets CASP14 (11),
CAMEO-Homo (65) and CAMEO-Hetero (21). In terms
of residue-wise percentage of correct prediction with
a tolerance criterion 20◦ for all side-chain dihedral
angles (from χ1 to χ4), OPUS-Mut outperforms other
methods measured by all residues (Figure 2A), or by
the residues located at the interfaces between different
peptide chains (Figure 2B). In addition, MAE (χ1), MAE
(χ2), MAE (χ3) and MAE (χ4) are used to measure the
mean absolute error (MAE) of χ1, χ2, χ3 and χ4 between
the native value and the predicted one, respectively. In
terms of MAE (χ1), MAE (χ2), MAE (χ3) and MAE (χ4),
OPUS-Mut also achieves the best results (Supplementary
Table S1). On additional oligomer dataset CAMEO93o,
OPUS-Mut also consistently outperforms other methods
(Supplementary Figure S2). Meanwhile, we list the results
of the percentage of correct prediction with a tolerance
criterion from 10◦ to 40◦ for all side-chain dihedral angles

(from χ1 to χ4) of different methods measured by all
residues on CAMEO93o in Supplementary Table S2. In
this study, the residues with at least one nearby residue
(Cα–Cα distance <10 Å) located at other peptide chain(s)
are defined as interfacial residues, and the rest residues
are defined as other residues.

For example, we show two cases of OPUS-Mut side-
chain modeling results on interfacial residues and their
corresponding experimentally determined crystal struc-
tures in Figure 3.

For a particular peptide chain, to evaluate the
influence of other peptide chains on it, we use OPUS-
Mut-s, which does not take the effect of other peptide
chains into consideration, and models each peptide chain
separately. As shown in Table 1, OPUS-Mut outperforms
OPUS-Mut-s measured by all residues. Although the
performance on other residues is almost the same, the
differences are mainly seen in the interfacial residues,
for which the performance of OPUS-Mut is significantly
better than that of OPUS-Mut-s.

Performance on scoring protein–protein docking
poses
For studying protein–protein docking poses, we first
examine the effect of the partner peptide chain(s)
in oligomers. We compare the summation of pRMSD
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Table 1. The residue-wise percentage of correct prediction with a tolerance criterion 20◦ for all side-chain dihedral angles (from χ1 to
χ4) of OPUS-Mut and OPUS-Mut-s on three oligomer datasets

All residues Interfacial residues Other residues

CASP14 (11)
OPUS-Mut 53.02% 58.00% 49.79%
OPUS-Mut-s 49.36% 49.18% 49.48%

CAMEO-Homo (65)
OPUS-Mut 65.67% 65.95% 65.57%
OPUS-Mut-s 64.17% 60.17% 65.60%

CAMEO-Hetero (21)
OPUS-Mut 66.14% 67.93% 65.26%
OPUS-Mut-s 64.12% 61.96% 65.19%

Figure 2. The residue-wise percentage of correct prediction with a tol-
erance criterion 20◦ for all side-chain dihedral angles (from χ1 to χ4) of
different methods on three oligomer datasets. (A) The results measured
by all residues. (B) The results measured by interfacial residues.

obtained by OPUS-Mut with that obtained by OPUS-Mut-
s on three oligomer datasets, the latter does not take
the effects of other peptide chains into consideration. As
shown in Table 2, the average values of Sall of the targets
in each oligomer dataset are lower than that of OPUS-
Mut-s, which means the local packing environment
used for side-chain prediction in OPUS-Mut is closer to
native than that in OPUS-Mut-s. The average values of
Sother between OPUS-Mut and OPUS-Mut-s are almost
the same, whereas the average values of Sinterface show
significant differences, which indicate that protein–
protein interaction may bring a more favorable local
packing environment to interfacial residues. In addition,
among all 97 oligomers in three datasets, OPUS-Mut
is lower than OPUS-Mut-s on 88 out of 97 targets in

Figure 3. Side-chain modeling results of OPUS-Mut on interfacial
residues. The experimentally determined crystal structures are marked in
various colors for each peptide chain. The side chains predicted by OPUS-
Mut are marked in red. (A and B) The results of homo-oligomer 7DK9 and
7FIP, respectively.

terms of Sall, and 94 out of 97 targets in terms of Sinterface,
respectively.

For further investigation, we examine the performance
of OPUS-Mut on distinguishing the native docking pose
from 10 predicted docking pose decoys for the targets
in Oligomer-Dock (75). The results of ZRANK [20] and
GNN-DOVE [25] are also listed for comparison. Before the
calculation of ZRANK, we use addh in Chimera 1.14 [29]
to add the hydrogens for each PDB file, then the ‘TER’ line
is added between ligand and receptor atom coordinates.
Before the calculation of GNN-DOVE, for each PDB file,
we rename the chain(s) in receptor as ‘A’, and the chain
in ligand as ‘B’. As shown in Table 3, using the summation
of pRMSD over all residues [OPUS-Mut (Sall)] as a scoring
function, our method correctly identifies the native pose
as the top-1 in 45 out of 75 targets, and ranks native
pose among top-3 poses in 67 out of 75 targets. The
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Table 2. The average values for the summation of pRMSD on three oligomer datasets

Sall Sinterface Sother

CASP14 (11)
OPUS-Mut 44.02 15.59 28.43
OPUS-Mut-s 48.49 21.16 27.33

CAMEO-Homo (65)
OPUS-Mut 46.05 11.90 34.15
OPUS-Mut-s 51.00 16.71 34.29

CAMEO-Hetero (21)
OPUS-Mut 46.59 14.12 32.47
OPUS-Mut-s 53.93 20.56 33.38

Table 3. Number of targets whose native docking poses can be successfully distinguished from their decoys in Oligomer-Dock (75) by
different methods

OPUS-Mut (Sall) OPUS-Mut (Minterface) ZRANK GNN-DOVE

TOP1 45 47 16 17
TOP3 67 61 56 29

corresponding results from ZRANK are 16 and 56, respec-
tively. And the corresponding results from GNN-DOVE
are 17 and 29, respectively. These results indicate that
our scoring function, which is based on the overall side-
chain packing favorableness in accordance with the local
packing environment, is an effective term for scoring
protein–protein docking poses.

Since the interfacial residues vary in different docking
poses, we therefore use 1

N

∑N
n=1

(
pRMSDn1 −pRMSDn2

)
, as

a scoring function [OPUS-Mut (Minterface)], to measure the
extent of the improvement of the interfacial side-chain
packing favorableness upon docking. For each pose, N
is the number of interfacial residues, pRMSDn1 denotes
the pRMSD of the residue n predicted by OPUS-Mut-s,
pRMSDn2 denotes the pRMSD of the residue n predicted
by OPUS-Mut. We assume that a larger Minterface refers
to a better docking pose. By using OPUS-Mut (Minterface)
as a scoring function, as shown in Table 3, our method
correctly identifies the native pose as the top-1 in 47 out
of 75 targets and ranks native pose among top-3 poses in
61 out of 75 targets.

As examples, we show docking pose evaluation results
on target T1080o in Figure 4. The score of OPUS-Mut (Sall)
for native pose (Figure 4A) is 7.78, which is the top-1
(lowest) ranking. The scores for other decoy poses are
higher e.g. 8.82 for the pose in Figure 4B, 14.54 for the
pose in Figure 4C and 18.04 for the pose in Figure 4D.
Moreover, in Figure 4B, the docking pose is close to the
native state (DockQ [30] score 0.948), the results show
that the score of ZRANK for this pose is −841.8, lower
than the native state score of −793.2, indicating that
ZRANK does not identify the correct native pose in this
case, whereas ‘Ours’ does.

We also show a failed case (7LJH) in Supplementary
Figure S3. The native pose of 7LJH (Supplementary Figure
S3) is the fourth ranking based on the scores of OPUS-
Mut (Sall) and is the ninth ranking based on the scores of

ZRANK. Supplementary Figure S3B–D shows three decoy
poses with lower score of OPUS-Mut (Sall) comparing to
that of the native pose. It should be noted that OPUS-Mut
(Sall) is a scoring term that is mainly based on the local
environment of side chains. Although it is effective in
most cases, it has shortcomings in evaluating the docking
poses from global structural point of view. Incorporating
our term with other complementary terms especially
those measured from global structural point of view in
the future may further improve the accuracy of docking
pose estimation.

Performance on studying protein mutation on
oligomeric targets
Two conserved oligomer interfaces of NSP7 and NSP8
have been studied by Biswal et al. [31]. NSP7 and NSP8
belong to a complex of non-structural proteins (NSPs)
that regulates the SARS-CoV-2 RNA-dependent RNA
polymerase activity of NSP12. According to Biswal
et al., NSP7-NSP8 complex is mediated by two distinct
oligomer interfaces: interface I responsible for hetero-
dimeric NSP7-NSP8 assembly, and interface II mediating
hetero-tetrameric interaction between the two NSP7-
NSP8 dimers [31]. The interface I contains the following
residues: K2, D5, V6, T9, L13, S15, V16, Q19, V66, I68,
L71, E74, M75, Q31, F49, K51, V53, S57, L60 and S61 in
NSP7, and R80, T84, M87, Q88, T89, L91, F92, R96, L98,
N100, L103, I106, P116, I119, I120 and L122 in NSP 8.
The interface II contains the following residues: S4, K7,
C8, V11, V12, H36, N37 and L40 in NSP7, and V83, M87,
M90, T93, and M94 in NSP8. In addition, some residues
in interface II of the NSP7–NSP8 tetrameric complex (i.e.
S4, C8, V11, V12, N37 and L40 in NSP7, and T84, M87,
M90, and M94 in NSP8) are also involved in contacts with
NSP12.

According to Biswal et al. [31], the interface I muta-
tions NSP7F49A, NSP7M52A, NSP7L56A and NSP8F92A impair
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Figure 4. Docking poses evaluation results on T1080o. The structures of native receptor are marked in blue, and the structures of native ligand are
marked in red. The structures of ligand predicted by ZDOCK 3.0.2 are marked in yellow. We use ‘Ours’ to denote the score from OPUS-Mut (Sall). The
pose with lower score is closer to the native pose.

the NSP7–NSP8 association. The interface II mutations
NSP7C8G, NSP7V11A, NSP8M90A and NSP8M94A impair the
NSP7-NSP8 hetero-tetramer formation. Their results also
showed that the interface II mutations lead to an even
more pronounced increase of NSP8 homodimer at the
expense of NSP7–NSP8 hetero-tetramer. This change is
comparable or even more severe than that caused by
the interface I mutations. Therefore, they concluded that
interface II can not only maintain the hetero-tetrameric
assembly of NSP7–NSP8, but also helps to stabilize the
hetero-dimeric assembly of NSP7–NSP8 [31]. Meanwhile,
the mutation NSP7N37V does not affect the stability of
the NSP7–NSP8 hetero-tetramer appreciably, but it leads
to a modest disruption of the NSP7–NSP8–NSP12 com-
plex [31]. According to Subissi et al. [32], the mutations
NSP8K82A and NSP8S85A do not affect the NSP8–NSP12
interaction, but lead to activity loss.

In this study, we download the SARS-CoV-2 NSP7–NSP8
complex (PDB: 7JLT) [31]. Then, we substitute the residues
according to the corresponding mutations mentioned
above and reconstruct their side chains with OPUS-Mut.
Similar to our previous study, we define the affected
residue as ones whose MAE of all predicted side-chain
dihedral angles (from χ1 to χ4) between the wild-type and
mutation is greater than 5◦. The rest of the side chains of
other residues are deemed relatively unshifted. All of the
affected residues are listed in Table 4 for each mutation,
and the detailed MAE of each affected residue is listed in
Supplementary Table S3.

As shown in Table 4, according to the results from
OPUS-Mut, the mutation NSP7F49A, NSP7M52A, NSP7L56A

and NSP8F92A may cause significant side-chain shift
of several residues involved in interface I. Mutations
NSP7C8G, NSP7V11A, NSP8M90A and NSP8M94A may cause
significant shift of several residues involved in both inter-
face I and interface II, therefore may influence the func-
tion of both interface I (responsible for hetero-dimeric
assembly) and interface II (mediating hetero-tetrameric
interaction). Mutations NSP8K82A and NSP8S85A may not
affect the NSP8–NSP12 interaction although both muta-
tions are close to the residues involved in NSP8–NSP12
interaction (T84, M87, M90 and M94). The predicted
results of NSP7N37V are somewhat inconclusive, and
the experimental results show that NSP7N37V does not
affect the stability of the NSP7–NSP8 hetero-tetramer
appreciably although it causes a modest disruption of
the NSP7–NSP8–NSP12 complex. Our predictions show
NSP7N37V may cause significantly shift of several residues
involved in interface I, interface II and NSP8–NSP12
interface, which implies that it could affect the stability
of the NSP7–NSP8 hetero-tetramer and the formation
NSP7-NSP8-NSP12 complex.

Concluding discussion
Protein side chains, especially those located at the inter-
faces, are crucial for protein–protein interaction. In this
study, we study protein–protein interaction through side-
chain modeling. We evaluate the performance of several
backbone-dependent side-chain modeling methods on
three oligomer datasets. The results show that our per-
vious released method OPUS-Mut [17] outperforms other
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Table 4. Affected residues of different mutations predicted by OPUS-Mut and catalogized by their locations.

Interface I Interface II NSP8-NSP12 Others

NSP7F49A K2, V6, V66, M75 M3, T45, M52, S25
NSP7M52A V66, K51
NSP7L56A T9, V66 M52
NSP8F92A L71, V66, Q88
NSP7C8G V66 M90, T93, M94 M90, M94 S25, R79, T81
NSP7V11A T9, S15, Q19, R80, M87, M75 H36, M87 M87 R21, E23, M52, D78, S25, Q34
NSP8M90A V66, M75 T93 S85, T81
NSP8M94A T9, L71 T93 M52, S85
NSP7N37V T9, Q19, R80, M75, M87 H36, L40, M87 L40, M87 R21, E23, Q34, S25
NSP8K82A E77
NSP8S85A V66, M75

Experimentally, on the interface I, mutations NSP7F49A, NSP7M52A, NSP7L56A and NSP8F92A impair the NSP7–NSP8 association; on the interface II, mutations
NSP7C8G, NSP7V11A, NSP8M90A and NSP8M94A impair the NSP7-NSP8 hetero-tetramer formation. The interface II maintains the hetero-tetrameric assembly of
NSP7–NSP8, and also stabilizes the hetero-dimeric assembly of NSP7–NSP8. The mutation NSP7N37V does not destabilize the stability of the NSP7–NSP8 hetero-
tetramer significantly, but causes a modest disruption of the NSP7–NSP8–NSP12 complex. The mutations NSP8K82A and NSP8S85A do not affect the NSP8–NSP12
interaction, but result in activity loss.

methods measured by all residues or by the interfacial
residues (Figure 2), and its side-chain modeling results
for the residues located between different peptide chains
are very close to their experimentally determined crystal
structures (Figure 3).

When omitting the influence of partner peptide
chain(s) in an oligomer and modeling the side chains of
each peptide chain separately, the modeling accuracy on
oligomer will decrease, especially for that on interfacial
residues (OPUS-Mut-s, Table 1). This result indicates that
the side chains of interfacial residues may experience
conformational changes upon protein–protein associa-
tion, and it also demonstrates the sensitivity of OPUS-
Mut towards local environmental changes.

OPUS-Mut can output the pRMSD for its predicted side
chains on each residue. For a particular residue, lower
pRMSD value indicates that OPUS-Mut predicts its side
chain with a higher confidence in accordance with its
local environment. In this study, we use the summation
of pRMSD as an indicator to gauge the overall packing
favorableness of side-chain in a protein structure i.e.
likeliness of its local packing environment to the native
packing state.

As shown in Table 2, the average values of the sum-
mation of pRMSD over all residues (Sall) obtained by
OPUS-Mut are lower than that obtained by OPUS-Mut-
s. The average values of Sother between OPUS-Mut and
OPUS-Mut-s are almost the same, whereas the average
values of Sinterface show significant differences. Among
all 97 oligomers in three datasets, OPUS-Mut is lower
than OPUS-Mut-s on 88 out of 97 targets in terms of Sall,
and 94 out of 97 targets in terms of Sinterface, respectively.
The results indicate that protein–protein interaction may
bring a more favorable local packing environment to the
interfacial residues.

We compare the performance of identifying native
docking pose based on pRMSD from OPUS-Mut with that
of ZRANK and GNN-DOVE on Oligomer-Dock (75). Using
the summation of pRMSD over all residues [OPUS-Mut
(Sall)] as a scoring function achieves better results than

that using the result from ZRANK and GNN-DOVE, either
on correctly identifying native pose, or on ranking native
pose in the top three poses (Table 3). The deep learning-
based binary classification model (0 for incorrect pose,
and 1 for near-native pose) such as GNN-DOVE is capable
of distinguishing the near-native poses from the incorrect
poses; however, they cannot effectively distinguish the
native pose from the near-native decoys. In contrast, as
shown in Figure 4, our scoring function OPUS-Mut (Sall),
which is based on the confidence of local side-chain
packing environment, can correctly identify the native
pose (Figure 4A) from the near-native pose (Figure 4B,
DockQ = 0.948). Thus, it may be an effective and comple-
mentary scoring term for studying protein–protein inter-
action, especially for identifying the native pose from its
decoys, including those near-native decoys.

Note that, using the summation of pRMSD on interfa-
cial residues as a scoring function [OPUS-Mut (Minterface)]
may have a bias since the interfacial residues vary in
different docking poses. Therefore, we recommend using
OPUS-Mut (Sall) as a scoring function for scoring different
poses.

We also verify the performance of OPUS-Mut in study-
ing protein mutation on oligomeric target, SARS-CoV-
2 NSP7–NSP8 complex. As shown in Table 4, most of
our results are consistent with the experimental results,
which indicate that the usage of OPUS-Mut in studying
protein mutation may be generalized to oligomeric tar-
get. Therefore, based on the predicted side-chain struc-
tural perturbation upon mutation, our methods may be
helpful to infer the possible functional changes of the
mutation on the interface between two proteins, which
is beneficial to protein engineering.

For side-chain modeling, OPUS-Mut, as well as other
backbone dependent side-chain modeling methods,
requires backbone as its input, whereas AlphaFold2 only
requires the sequence as its input. As shown in Supple-
mentary Table S4, when using the native backbone as its
input, OPUS-Mut significantly outperforms AlphaFold2
on both monomer targets and oligomer targets measured
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by side-chain modeling accuracy. In addition, OPUS-Mut
is more helpful if one wishes to construct the side chains
on a given backbone.

For modeling oligomer target, AlphaFold2 can pre-
dict the structure using the sequence information only.
There is, however, still a gap between the prediction of
AlphaFold2 and the native structure (e.g. TM-score = 0.66
for CASP14 (11) in Supplementary Table S4), whereas the
docking method, such as ZDOCK, which uses the struc-
tures of receptor and ligand as its inputs, achieves better
results [the best TM-score of the top-10 ZDOCK predic-
tions for CASP14 (11) is 0.92]. In this case, our scoring
function OPUS-Mut (Sall) correctly identifies the native
pose as the top-1 or top-3 which is better than those
from ZRANK and GNN-DOVE, and therefore OPUS-Mut
(Sall) may be a useful term in helping the docking method
for the estimation of docking pose due to its effectiveness
of identifying the native pose from its decoys, including
those near-native decoys.

Key Points

• We evaluate the performance of several backbone-
dependent side-chain modeling methods on three
oligomer datasets. The results show that our pervious
released method OPUS-Mut outperforms other methods
measured by all residues or by the interfacial residues.
The results also demonstrate the sensitivity of OPUS-Mut
towards local side-chain packing environment.

• We propose a scoring function for protein–protein dock-
ing pose assessment, OPUS-Mut (Sall), which is based on
the overall side-chain packing favorableness in accor-
dance with the local packing environment. The results
show that it correctly identifies the native pose as the
top-1 in 45 out of 75 targets and ranks native pose among
top-3 poses in 67 out of 75 targets. This indicates its
possibility to be a new and effective scoring term for
studying protein–protein interaction.

• We verify the performance of OPUS-Mut in studying pro-
tein mutation on oligomeric target, SARS-CoV-2 NSP7–
NSP8 complex. The results suggest that the usage of
OPUS-Mut in studying protein mutation may be gener-
alized to oligomeric complexes.

• To facilitate the research in the field, the code of
OPUS-Mut and the datasets collected in this paper
can be downloaded at http://github.com/OPUS-MaLab/
opus_mut.

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.
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