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Abstract

Accurate protein side-chain modeling is crucial for protein folding and protein design. In the past decades, many successful methods
have been proposed to address this issue. However, most of them depend on the discrete samples from the rotamer library, which
may have limitations on their accuracies and usages. In this study, we report an open-source toolkit for protein side-chain modeling,
named OPUS-Rota4. It consists of three modules: OPUS-RotaNN2, which predicts protein side-chain dihedral angles; OPUS-RotaCM,
which measures the distance and orientation information between the side chain of different residue pairs and OPUS-Fold2, which
applies the constraints derived from the first two modules to guide side-chain modeling. OPUS-Rota4 adopts the dihedral angles
predicted by OPUS-RotaNN2 as its initial states, and uses OPUS-Fold2 to refine the side-chain conformation with the side-chain contact
map constraints derived from OPUS-RotaCM. Therefore, we convert the side-chain modeling problem into a side-chain contact map
prediction problem. OPUS-Fold2 is written in Python and TensorFlow2.4, which is user-friendly to include other differentiable energy
terms. OPUS-Rota4 also provides a platform in which the side-chain conformation can be dynamically adjusted under the influence
of other processes. We apply OPUS-Rota4 on 15 FM predictions submitted by AlphaFold2 on CASP14, the results show that the side
chains modeled by OPUS-Rota4 are closer to their native counterparts than those predicted by AlphaFold2 (e.g. the residue-wise RMSD
for all residues and core residues are 0.588 and 0.472 for AlphaFold2, and 0.535 and 0.407 for OPUS-Rota4).
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Introduction
Protein side-chain modeling is an important task since
the side-chain conformations are closely relevant to their
biological functions [1, 2]. In recent years, many success-
ful programs have been proposed to address the side-
chain modeling problem [1–11].

Many traditional protein side-chain modeling pro-
grams [1, 2, 5, 6] are composed of three key components: a
rotamer library, an energy function and a search method.
One of the advantages of these methods is that they are
very fast. Most of them can construct the side chains
of a target within seconds. However, since these side-
chain modeling methods depend on the discrete side-
chain dihedral angles sampled from the rotamer library,
the accuracy of the sampling candidates in the rotamer
library determines the best performance these modeling
methods can achieve.

With the development of deep learning techniques,
some studies try to apply them to solve the protein
side-chain modeling problem [4, 11]. Our previous work
OPUS-RotaNN in OPUS-Rota3 [4] tried to predict protein

side-chain dihedral angles following the protocol we used
to predict protein backbone torsion angles in OPUS-TASS
[12]. However, the accuracy of OPUS-RotaNN is worse
than those of traditional side-chain modeling methods.
We concluded that some new features may need to be
designed to measure the local environment for each
residue [4]. Recently, DLPacker [11] used a 3DConv Neural
Network to improve the accuracy of side-chain modeling
by a large margin. Most importantly, the predicted den-
sity map from DLPacker is an excellent descriptor for the
residue’s local environment measurement.

Protein structure prediction has become a hot topic
since AlphaFold2 from DeepMind achieved an astonish-
ingly high performance in CASP14 [13]. Before that, the
protein backbone structure prediction driven by con-
tact map, which is used to describe if the Euclidean
distance between two Cβ atoms is <8.0 Å, is the most
common way to deliver backbone conformation [14].
Recently, trRosetta [15] supplemented the definition of
contact map, including both distance and orientation
information. The distance information is the traditional
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Cβ–Cβ distance, and the orientation information between
residues a and b includes three dihedrals (ω, θab and
θba) and two angles (ϕab and ϕba). Here, ω represents the
dihedral of Cαa–Cβa–Cβb–Cαb, θab represents the dihedral
of Na–Cαa–Cβa–Cβb and ϕab represents the angle of Cαa–
Cβa–Cβb. Since the backbone modeling driven by back-
bone contact map works well, we can develop the side-
chain contact map for side-chain modeling accordingly.
In this case, we convert the protein side-chain modeling
problem from developing better scoring functions [16]
to improving the accuracy of side-chain contact map
prediction.

To generate protein 3D backbone structure from its
corresponding backbone contact map, crystallography
and NMR system (CNS) [17] and pyRosetta [18, 19] are
the most commonly used tools. In addition, the gradient-
based backbone folding framework OPUS-Fold2 in our
protein folding toolkit OPUS-X [20] can achieve compa-
rable results to the Rosetta folding protocol in trRosetta
[15]. Moreover, OPUS-Fold2 is written in Python and Ten-
sorFlow2.4, which is user-friendly to any source-code
level modification. Therefore, OPUS-Fold2 is suitable to
be modified to deal with the side-chain modeling task.

In this paper, we propose an open-source toolkit for
protein side-chain modeling, named OPUS-Rota4. It is
comprised of three modules: OPUS-RotaNN2, OPUS-
RotaCM and OPUS-Fold2. OPUS-RotaNN2 includes some
additional features, especially the local environment
feature described by DLPacker [11], into its previous
version OPUS-RotaNN [4], and delivers significantly
better side-chain dihedral angles prediction than those
from other state-of-the-art methods. OPUS-RotaCM
reformats the input features from OPUS-RotaNN2 into
2D shape and uses them to predict the distance (Cβ–
Cβ ) and orientation (ω, θab, θba, ϕab and ϕba) information
between the side chains of different residue pairs. OPUS-
Fold2 used to be a gradient-based backbone folding
framework [20], and it has been adjusted to deal with
the side-chain modeling task in this work. It applies the
constraints derived from the first two modules to guide
side-chain modeling.

Methods
Framework of OPUS-Rota4
OPUS-Rota4 consists of three modules: OPUS-RotaNN2,
OPUS-RotaCM and OPUS-Fold2. As shown in Figure 1,
OPUS-RotaNN2 and OPUS-RotaCM share the same input
features. 1D features are derived from protein backbone
conformation. There are 41 features per residue in total:
7 PC7, 19 PSP19, 3 SS3, 8 SS8 and 4 PP4. PC7 represents
7 physicochemical properties of each residue, namely, a
steric parameter, hydrophobicity, volume, polarizability,
isoelectric point, helix probability and sheet probability
[21]. PSP19 is derived from our previous works [22, 23],
which classify 20 residues into 19 rigid-body blocks. Here,
PSP19 is a 19-d 0-1 vector, each dimension represents
whether its corresponding rigid-body block exists in the

residue or not [12]. The details of PSP19 can be found in
Supplementary Table S1. SS3 and SS8 are two one-hot
features that denote 3-state and 8-state secondary struc-
ture [24] of each residue, respectively. PP4 is the backbone
torsion angles introduced as sin(φ), cos(φ), sin(ψ) and
cos(ψ). 3DCNN is the side-chain density map predicted
by DLPacker (OPUS) for each residue as its local environ-
ment descriptor. The shape of 3DCNN for each residue is
(15, 15, 15 and 4). Here, same as DLPacker [11], we split a
20 Å box into 15 bins along each axis (X-, Y- and Z-axis),
and use four element channels (C, N, O and S) to repre-
sent the probability of occurrence of the corresponding
element. trRosetta100 is a 100-d feature, which is used to
describe backbone distance (Cβ–Cβ ) and orientation (ω,
θab, θba, ϕab and ϕba) contact information [15]. The Cβ–Cβ

contains 37 features, ϕ contains 13 features, ω and θ con-
tain 25 features. Inspired by our previous work OPUS-CSF
[25], CSF15 is the relative position of the backbone atoms
of a specific residue at the local molecular coordinate
system built in its contact counterpart [4]. Specifically,
the origin of the local molecular coordinate system is on
Cα. The X-axis is along the Cα–C line. The Y-axis is in the
plan of Cα–C–O and parallels to the orthogonal projection
of C–O vector. The Z-axis is defined accordingly.

DLPacker (OPUS)
Recently, a successful deep learning-based protein side-
chain modeling method DLPacker [11] has been pro-
posed, improving the accuracy of side-chain modeling
by a large margin. Based on DLPacker, to capture the
low-level feature more precisely, we respectively add 6
Residual Blocks to the two low-level feature pathways in
the 3DConv U-Net [26] architecture of DLPacker, same as
the DLPacker paper did in the high-level feature pathway.
Meanwhile, we train 7 models using same procedure
to form the final ensemble models and average their
outputs to make the final prediction.

OPUS-RotaNN2
The input features of OPUS-RotaNN2 can be categorized
into four groups: 1D features, trRosetta100, CSF15
and 3DCNN. The output of OPUS-RotaNN2 contains
eight regression nodes: sin(χ1), cos(χ1), sin(χ2), cos(χ2),
sin(χ3), cos(χ3), sin(χ4) and cos(χ4).

The neural network architecture of OPUS-RotaNN2
is shown in Figure 2, and it is mainly derived from the
architecture of OPUS-TASS2 in OPUS-X paper [20]. We
use a stack of dilated residual-convolutional blocks to
perform the feature extraction for 2D features, and use
the attention mechanism [27] to sum up the multiple
results of all residues with a specific residue and output
a 128-d vector as its new feature. For 3DCNN, we use
a MLP unit to generate a 512-d vector for each residue.
Finally, we concatenate the three parts and feed them
into the following modules which are identical to that
in OPUS-TASS2 [20]. We train 7 models and the median
of their outputs is used to make the final prediction.
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Figure 1. Flowchart of OPUS-Rota4. OPUS-Rota4 uses the dihedral angles predicted by OPUS-RotaNN2 as its initial states. Then, OPUS-Fold2 is used to
refine the side-chain conformation with the side-chain contact constraints predicted by OPUS-RotaCM. L denotes the sequence length. (L,L,∗) represents
the corresponding information between two residues. The blue structure is the native state, the green structure is the initial state and the red structure
is the final prediction.

Figure 2. Framework of OPUS-RotaNN2. 2D features go through 61 dilated residual-convolutional blocks and an attention module [27], and output a
128-d vector for each residue. 3DCNN goes through a MPL unit and outputs a 512-d vector. Then, these two vectors and 1D features are concatenated to
go through three modules: Resnet module [36], modified Transformer module [27] and bidirectional Long-Short-Term-Memory module [37]. All strides
in the residual units are set to be one. The batch size is also set to be one in OPUS-RotaNN2.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab529/6461160 by guest on 20 D

ecem
ber 2021
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Figure 3. Framework of OPUS-RotaCM. 3DCNN goes through a MPL unit and outputs a 256-d vector. Then 1D features and 3DCNN are concatenated to
form a 297-d 1D inputs vector. We use outer concatenation function to convert 1D inputs (L, 297) into 2D features (L, L, 594). After concatenating with
trRosetta100 and CSF15, they go through a stack of 61 dilated residual-convolutional blocks. The batch size is set to be one in OPUS-RotaCM.

OPUS-RotaCM
The input features of OPUS-RotaCM are identical to that
of OPUS-RotaNN2. The output of OPUS-RotaCM is basi-
cally the same as that in trRosetta [15] but with some
modifications. Instead of using Cα and Cβ to measure
the backbone conformation, we use the side-chain atoms
as pseudo-Cα and Cβ to measure the side-chain confor-
mation. In general, for a specific residue, we use the
side-chain atoms that are required for its side-chain
dihedral angle χ1 calculation. In this case, only χ1 will
be refined by OPUS-RotaCM. The detailed definitions of
pseudo-Cα and Cβ are shown in Supplementary Table S2.
OPUS-RotaCM outputs one pseudo-Cβ- pseudo-Cβ dis-
tance, three dihedrals (ω, θab and θba) and two angles (ϕab

and ϕba) between residues a and b. The distance ranges
from 2 to 20 Å, segmented into 36 bins with 0.5 Å interval,
and with one extra bin represents the >20 Å case. ω and
θ range from −180 to 180◦, segmented into 24 bins with
15◦ interval and with one extra bin represents the non-
contact case. ϕ ranges from 0 to 180◦, segmented into 12
bins with 15◦ interval and with one extra bin represents
the non-contact case.

The neural network architecture of OPUS-RotaCM is
shown in Figure 3. We train 7 models and the average of
their outputs is used to make the final prediction.

OPUS-Fold2
OPUS-Fold2 used to be a gradient-based backbone folding
framework [20] and it has been modified to be a gradient-
based side-chain modeling framework in this research.
The variables of OPUS-Fold2 are the side-chain dihedral
angles (χ1, χ2, χ3 and χ4) of all residues. OPUS-Fold2
optimizes its variables to minimize the loss function
derived from the output of OPUS-RotaCM.

The predictions from OPUS-RotaNN2 are set to be the
initial states of χ1, χ2, χ3 and χ4. Same as the backbone

modeling version in OPUS-X [20], the loss function of
OPUS-Fold2 in this research is defined as follows:

loss = wdist
1

Nconsdist

∑
i∈consdist

scorei
dist + wω

1
Nconsω

∑
i∈consω scorei

ω

+ wθ
1

Nconsθ

∑
i∈consθ

scorei
θ + wϕ

1
Nconsϕ

∑
i∈consϕ scorei

ϕ

consdist is the collection of distance constraints with
probability P4≤dist<20 ≥ 0.05. consω and consθ are the col-
lections of ω and θ constraints with probability Pcontact ≥
0.55.consϕ is the collection of ϕ constraints with probabil-
ity Pcontact ≥ 0.65. wdist, wω, wθ and wϕ are the weight of
each term, which are set to be 5, 4, 4 and 4, respectively.

For distance distribution, we use the following equa-

tion: scorei
dist = −lnPi + ln

((
di/dN

)α

PN
)
, wherePi is the

probability of the ith bin, di is the distance of the ith
distance bin, α is 1.57 [28] and N is the bin [19.5, 20]. We
use the same N for each case. For orientation distribution,
we use the following equation:scorei

orient = −lnPi + ln PN,
where N is bin [165◦, 180◦]. Then, cubic spline curve is
generated to make each distribution differentiable.

OPUS-Fold2 is implemented based on TensorFlow2.4
[29]. Adam [30] optimizer is used to optimize the loss
function with an initial learning rate of 1.0, 500 epochs
are performed. The side-chain conformation with the
lowest loss during the optimization is considered as the
final prediction.

Datasets
OPUS-RotaNN2 and OPUS-RotaCM use the same training
and validation sets as those in OPUS- RotaNN [4], which
were culled from the PISCES server [31] by SPOT-1D [21]
on February 2017 with following constraints: R-free <1,
resolution >2.5 Å and sequence identity <25%. There are
10 024 proteins in the training set and 983 proteins in the
validation set.
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Table 1. The performance of OPUS-RotaNN2 after introducing corresponding input feature groups one by one. The number in each
dataset’s parenthesis represents the number of proteins it contains

MAE (χ1) MAE (χ2) MAE (χ3) MAE (χ4) ACC

CAMEO (60)

1D features 35.51 43.28 57.84 51.37 36.53%
+trRosetta100 31.52 41.69 57.07 51.49 40.32%
+CSF15 30.25 41.31 57.50 51.57 40.50%
+3DCNN 21.77 31.24 49.64 47.66 55.63%

CASPFM (56)

1D features 31.19 39.94 53.02 49.01 41.93%
+trRosetta100 27.15 37.44 53.09 49.22 46.42%
+CSF15 25.75 36.25 53.17 49.63 46.94%
+3DCNN 18.85 28.80 44.89 45.06 57.97%

CASP14 (15)

1D features 42.04 46.35 54.31 39.78 28.56%
+trRosetta100 37.73 45.67 54.41 39.19 30.42%
+CSF15 35.56 45.20 53.07 39.46 31.25%
+3DCNN 28.35 40.34 51.41 41.25 41.25%

To evaluate the side-chain modeling for native
backbone structure, we use three independent test
sets. CASPFM (56), collected by SAINT [32], contains 56
Template-Free Modelling (FM) targets obtained from
CASP10 to CASP13. CASP14 (15), collected by OPUS-
X [20], contains 15 FM targets downloaded from the
CASP website (http://predictioncenter.org). CAMEO (60),
collected by OPUS-Rota3 [4], contains 60 hard targets
(we discard one target with over 900 residues in length)
released between January 2020 and July 2020 from
the CAMEO website [33]. To evaluate the side-chain
modeling for non-native backbone structure, we collect
the predictions submitted by AlphaFold2 [13] for the
targets in CASP14 (15). This non-native backbone dataset
is denoted as CASP14-AF2 (15). The average TM-score [34]
of these 15 predictions from their native counterparts
is 0.85. The number in each dataset’s parenthesis
represents the number of proteins it contains.

Implementation
All models are implemented in TensorFlow v2.4 [29] and
trained on one NVIDIA Tesla V100. The batch size of each
model is set to be one. The Glorot uniform initializer and
the Adam optimizer [30] are used. The initial learning
rate is 0.001 and it will be reduced by half when the accu-
racy of validation set is decreased. After being reduced by
four times, the training process will end. Most models are
ended around 15 epochs. The Mean Squared Error (MSE)
loss is used in OPUS-RotaNN2 with the eight regression
predictions for sin(χ1), cos(χ1), sin(χ2), cos(χ2), sin(χ3),
cos(χ3), sin(χ4) and cos(χ4). The cross-entropy loss is
used in OPUS-RotaCM with the four classification predic-
tions for pseudo-Cβ- pseudo-Cβ distance, ω, θ and ϕ. The
scripts for calculating the input features can be found in
our released code.

Performance metrics
MAE (χ1), MAE (χ2), MAE (χ3) and MAE (χ4) are used to
measure the mean absolute error (MAE) of χ1, χ2, χ3

and χ4 between the native value and the predicted one,
respectively. Accuracy (ACC) is defined as the percentage
of correct prediction with a tolerance criterion 20◦ for all
side-chain dihedral angles (from χ1 to χ4). Root mean
square error (RMSD) is calculated by the Superimposer
function in Biopython [35] residue-wisely using all heavy
atoms. Paired t-test is used to get the significance value
P for the residue-wise comparison. Following FASPR [2],
the residue with >20 residues, between which the Cβ–Cβ

distance is within 10 Å, is defined as core residue. The Cα

atom is used for Gly. In summary, 25% residues in CAMEO
(60), 18% residues in CASPFM (56) and 17% residues in
CASP14 (15) are defined as core residue.

Code availability
The code and pre-trained models of OPUS-Rota4 can be
downloaded from https://github.com/OPUS-MaLab/opu
s_rota4.

Results
Input feature study
To evaluate the importance of four input feature groups
in OPUS-RotaNN2, we add them to the input of OPUS-
RotaNN2 and train the model one by one. As the results
shown in Table 1, in terms of MAE (χ1), MAE (χ2), MAE
(χ3), MAE (χ4) and ACC, the accuracy of OPUS-RotaNN2
is gradually increased after introducing these feature
groups into its input. OPUS-RotaNN2 finally achieves the
best performance when using 4 input feature groups
together.

Performance of different side-chain modeling
methods
We compare the direct prediction results from OPUS-
RotaNN2 and the final refined results from OPUS-Rota4
with those from three rotamer library-based methods
FASPR [2], SCWRL4 [6] and OSCAR-star [5], and two deep
learning-based methods OPUS-RotaNN [4] and DLPacker
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Table 2. The performance of different side-chain modeling methods on three native backbone test sets measured by all residues

MAE (χ1) MAE (χ2) MAE (χ3) MAE (χ4) ACC

CAMEO (60)

FASPR 29.15 42.36 57.01 57.93 49.10%
SCWRL4 29.01 42.88 57.25 57.17 49.48%
OSCAR-star 27.29 41.97 56.08 57.66 49.91%
OPUS-RotaNN 33.28 42.47 57.68 51.39 37.83%
DLPacker 24.11 39.60 63.84 68.10 52.19%
OPUS-RotaNN2 21.61 31.13 49.79 47.78 55.61%
OPUS-Rota4 21.34 31.13 49.79 47.78 57.35%

CASPFM (56)

FASPR 26.63 39.75 53.40 54.81 53.11%
SCWRL4 27.09 40.44 52.67 54.61 53.17%
OSCAR-star 24.53 37.43 50.51 52.99 54.92%
OPUS-RotaNN 29.41 38.93 53.33 49.19 42.86%
DLPacker 21.35 37.79 61.05 66.78 55.26%
OPUS-RotaNN2 18.85 28.50 44.88 44.87 58.17%
OPUS-Rota4 18.46 28.50 44.88 44.87 60.42%

CASP14 (15)

FASPR 35.80 48.72 56.59 45.19 36.34%
SCWRL4 35.27 48.13 58.37 48.15 36.57%
OSCAR-star 34.45 48.10 56.70 42.28 36.76%
OPUS-RotaNN 39.57 45.67 53.80 39.77 27.31%
DLPacker 30.99 48.21 65.14 70.83 40.05%
OPUS-RotaNN2 28.21 40.14 51.93 40.76 41.16%
OPUS-Rota4 28.33 40.14 51.93 40.76 43.38%

Table 3. The RMSD results of different side-chain modeling methods on three native backbone test sets

CAMEO (60) CASPFM (56) CASP14 (15)

All Core All Core All Core

FASPR 0.393 0.308 0.370 0.299 0.485 0.400
SCWRL4 0.400 0.306 0.385 0.303 0.487 0.397
OSCAR-star 0.380 0.295 0.349 0.283 0.474 0.418
DLPacker 0.362 0.248 0.341 0.239 0.464 0.325
OPUS-Rota4 0.307 0.199 0.278 0.187 0.405 0.265

[11]. In terms of MAE (χ1), MAE (χ2), MAE (χ3), MAE (χ4)
and ACC, OPUS-RotaNN2 and OPUS-Rota4 outperform
other methods by a large margin, either measured by
all residues (Table 2) or measured by core residues only
(Supplementary Table S3). Note that, the difference
between OPUS-RotaNN2 and OPUS-Rota4 only exists
in χ1 since OPUS-Fold2 uses the side-chain contact
constraints derived from the pseudo-Cα and Cβ that
are required for χ1 calculation from OPUS-RotaCM. As
shown in Table 3, in terms of residue-wise RMSD, OPUS-
Rota4 also delivers better results than other methods for
all residues and core residues.

Side-chain modeling for non-native backbone
structure
We evaluate the performance of different side-chain
modeling methods on CASP14-AF2 (15). The MAE (χ1),
MAE (χ2), MAE (χ3), MAE (χ4) and ACC results are shown
in Table 4. In terms of ACC, OPUS-Rota4 outperforms
other methods, including the original side chains

submitted by AlphaFold2 [13]. The RMSD result of each
method and its significance value comparing with the
result from OPUS-Rota4 is listed in Table 5. The results
show that OPUS-Rota4 significantly outperforms other
methods on all residues and core residues. The detailed
comparisons between OPUS-Rota4 and AlphaFold2 for
each target are listed in Supplementary Table S4. In terms
of RMSD results for all residues, the side chains modeled
by OPUS-Rota4 are closer to their native counterparts
than the original side chains of AlphaFold2’s predictions
on 13 out of 15 targets in CASP14-AF2 (15).

Performance of OPUS-Fold2 on side-chain
modeling
OPUS-Fold2 is a gradient-based side-chain modeling
framework, and it is able to refine all side-chain atoms. In
OPUS-Rota4, we use the prediction from OPUS-RotaCM to
refine the side-chain dihedral χ1 only. For χ2 refinement,
we set the pseudo-Cα and Cβ to be those atoms required
for χ2 calculation and retrain the OPUS-RotaCM model.
Then we use the predicted χ2 constraints from the
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Table 4. The performance of different side-chain modeling methods on CASP14-AF2 (15)

MAE (χ1) MAE (χ2) MAE (χ3) MAE (χ4) ACC

All

AlphaFold2 40.14 57.46 71.25 41.79 30.56%
FASPR 44.73 52.92 57.91 46.12 29.91%
SCWRL4 45.51 51.86 57.43 48.86 29.91%
OSCAR-star 43.83 52.13 58.14 48.46 30.09%
DLPacker 43.04 54.90 67.63 70.41 30.05%
OPUS-RotaNN2 42.00 46.48 55.81 39.41 30.88%
OPUS-Rota4 42.06 46.48 55.81 39.41 32.13%

Core

AlphaFold2 26.93 53.46 61.61 32.26 47.51%
FASPR 30.80 53.59 54.12 59.18 43.09%
SCWRL4 31.13 51.25 54.48 50.34 44.20%
OSCAR-star 32.26 51.25 51.55 63.89 43.65%
DLPacker 30.55 49.02 60.24 51.03 45.03%
OPUS-RotaNN2 28.78 40.87 59.03 34.07 50.28%
OPUS-Rota4 28.51 40.87 59.03 34.07 51.38%

Table 5. The RMSD results of different side-chain modeling
methods on CASP14-AF2 (15)

All Core

RMSD PRMSD RMSD PRMSD

AlphaFold2 0.588 1.3E−12 0.472 5.5E−04
FASPR 0.574 2.5E−09 0.484 1.4E−05
SCWRL4 0.585 3.9E−14 0.489 1.0E−05
OSCAR-star 0.569 5.9E−08 0.483 3.0E−05
DLPacker 0.576 1.1E−13 0.449 5.9E−04
OPUS-Rota4 0.535 – 0.407 –

modified OPUS-RotaCM to further refine the prediction
from OPUS-Rota4, the results in Supplementary Table S5
show that the χ2 constraints are not accurate enough to
improve the χ2 accuracy. It indicates that the side-chain
contact map prediction for more flexible dihedral χ2 is
more challenging.

To verify the side-chain modeling ability of OPUS-
Fold2, we use the side-chain contact map constraints
derived from the native structures for χ1–χ4 to guide
side-chain modeling. As shown in Table 6, with the cor-
rect constraints, OPUS-Fold2 can guide the side chains to
their proper places.

Case study
We show some successful and failed cases of OPUS-
Rota4 side-chain modeling results in Figures 4 and 5,
respectively. It shows that side-chain modeling for the
longish loop area may need to be further refined.

Concluding discussion
Protein side-chain modeling is a crucial task since many
important biological processes depend on the interaction
of protein side chains. In this paper, we develop an open-
source toolkit for protein side-chain modeling, named

OPUS-Rota4. It includes a side-chain dihedral angles pre-
dictor, namely OPUS-RotaNN2; a side-chain contact map
predictor, namely OPUS-RotaCM and a gradient-based
side-chain modeling framework, namely OPUS-Fold2.

The performance of traditional rotamer library-based
side-chain modeling methods are limited by the accu-
racy of the discrete sampling candidates in the rotamer
library and the precision of their scoring functions, there-
fore, there may be an upper bound for these methods. As
shown in Tables 2–5, FASPR [2] and SCWRL4 [6] achieve
similar performance on both native backbone and non-
native backbone test sets. OSCAR-star [5] is better than
those two methods for using more effective scoring func-
tion. One of the advantages of these methods is that they
can deliver the results within seconds, which is suitable
for iterative side-chain construction.

For deep learning-based side-chain modeling method,
the major issue is how to define the local environment
for each residue properly [4]. Benefit from DLPacker [11],
a recently proposed method which uses a 3DConv Neural
Network to output the side-chain density map for each
residue, we use the side-chain density map as the local
environment descriptor in OPUS-RotaNN2 and signifi-
cantly improve the final prediction (Table 1).

As shown in Tables 2, 3 and Supplementary Table S3
and, the performance of OPUS-RotaNN2 is significantly
better than the performance of FASPR [2], SCWRL4 [6],
OSCAR-star [5], OPUS-RotaNN [4] and DLPacker [11] on
three native backbone test sets, either measured by all
residues or measured by core residues only. For non-
native backbone side-chain modeling, which is especially
useful in protein structure prediction, OPUS-RotaNN2
and OPUS-Rota4 also achieve better results than these
methods (Tables 4 and 5). In addition, comparing with
the original side chains submitted by AlphaFold2 [13], the
side chains modeled by OPUS-Rota4 are closer to their
native counterparts on 13 out of 15 targets in CASP14-
AF2 (15) (Supplementary Table S4). We believe that the
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Table 6. The performance of OPUS-Fold2 using the side-chain contact map constraints derived from the native structures

MAE (χ1) MAE (χ2) MAE (χ3) MAE (χ4) ACC

CAMEO (60)

OPUS-Rota4 (w/real) 6.73 14.59 25.56 26.83 86.69%

CASPFM (56)

OPUS-Rota4 (w/real) 5.82 12.31 22.85 27.21 88.17%

CASP14 (15)

OPUS-Rota4 (w/real) 8.24 18.11 24.17 23.92 84.58%

Figure 4. Successful side-chain modeling examples of OPUS-Rota4. (A) T1037-D1 (Length: 404, RMSD: 0.418), (B) T1041-D1 (Length: 241, RMSD: 0.421),
(C) T1090-D1 (Length: 177, RMSD: 0.214), (D) 2020-03-14_00000031_1 (Length: 545, RMSD: 0.24), (E) 2020-03-21_00000182_1 (Length: 658, RMSD: 0.227),
(F) 2020-04-18_00000132_1 (Length: 98, RMSD: 0.285), (G) 2020-05-09_00000226_1 (Length: 300, RMSD: 0.191), (H) 2020-05-16_00000125_1 (Length: 257,
RMSD: 0.188). The blue structure is the native state and the red structure is the prediction.

side chains that are closer to their native states may
give a positive feedback to refine their corresponding
backbones further.

Predicting accurate protein side-chain dihedral angles
directly is important, but what is more crucial is how to

refine them in a differentiable manner. On the one hand,
the accuracy of side-chain dihedral angles can be further
improved by other differentiable energy terms. On the
other hand, making side chains adjustable may be bene-
fit for some other processes that can be introduced into
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Figure 5. Failed side-chain modeling examples of OPUS-Rota4. (A) T1027-D1 (Length: 127, RMSD: 0.521), (B) 2020-06-27_00000154_1 (Length: 141, RMSD:
0. 632). The blue structure is the native state and the red structure is the prediction.

the energy function, such as protein–protein interaction.
Inspired by the successful usage of backbone contact

map in protein backbone structure prediction [14, 15],
we develop a side-chain contact map predictor OPUS-
RotaCM. From another point of view, side-chain contact
map that includes distance and orientation information
can be considered as a more accurate scoring function.
In OPUS-RotaCM, we use the side-chain atoms that are
required for the side-chain dihedral angle χ1 calcula-
tion as pseudo-Cα and Cβ to measure the side-chain
conformation. As shown in Tables 2, 4 and Supplemen-
tary Table S3, the χ1 accuracy of OPUS-RotaNN2 can be
further refined by the constraints derived from OPUS-
RotaCM (OPUS-RotaNN2 versus OPUS-Rota4). However,
for χ2 refinement, the predicted side-chain contact map
constraints obtained by following the same training and
inference protocol for χ1 are not accurate enough (Sup-
plementary Table S5), which means χ2 is more flexible
than χ1, and more new features may need to be intro-
duced.

OPUS-Fold2 used to be a gradient-based framework
for backbone folding [20], and it has been modified to
be a side-chain modeling framework in this paper. As
shown in Table 6, OPUS-Fold2 can guide the side chains
to their proper places with the correct side-chain contact
constraints, showing the effectiveness of its side-chain
modeling ability. In this case, we can improve the protein
side-chain modeling accuracy by improving the accuracy
of side-chain contact map prediction other than develop-
ing better scoring functions [16].

Key Points

• The protein side-chain dihedral angles predicted
by OPUS-RotaNN2 are significantly better than
those predicted by other state-of-the-art meth-
ods in the literature, either measured by all
residues or measured by core residues only.

• We propose a side-chain contact map prediction
method, OPUS-RotaCM, converting the protein
side-chain modeling problem from developing
better scoring functions to improving the accu-
racy of side-chain contact map prediction.

• We develop a user-friendly gradient-based side-
chain modeling framework, OPUS-Fold2, to refine
the side-chain conformation. The protein side-
chain conformation is adjustable when introduc-
ing the energy terms derived from other pro-
cesses, and this may be useful for the corre-
sponding process.

• For non-native backbone side-chain model-
ing, OPUS-Rota4 can consistently deliver better
results than other methods, showing its potential
usage in structure prediction.
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